The rings which are Boolean
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 175-184
Cet article a éte moissonné depuis la source Library of Science
We study unitary rings of characteristic 2 satisfying identity x^p = x for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if p = 2^n - 2 or p = 2^n - 5 or p = 2^n + 1 for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form 2^q + 2m + 1 or 2^q + 2m where q is a natural number and m ∈ 1,2,...,2^q - 1.
Keywords:
Boolean ring, unitary ring, characteristic 2
@article{DMGAA_2011_31_2_a3,
author = {Chajda, Ivan and \v{S}vr\v{c}ek, Filip},
title = {The rings which are {Boolean}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {175--184},
year = {2011},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a3/}
}
Chajda, Ivan; Švrček, Filip. The rings which are Boolean. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 175-184. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a3/
[1] I.T. Adamson, Rings, modules and algebras (Oliver, Edinburgh, 1971)
[2] G. Birkhoff, Lattice Theory, 3rd edition (AMS Colloq. Publ. 25, Providence, RI, 1979)
[3] I. Chajda and F. Švrček, Lattice-like structures derived from rings, Contributions to General Algebra, Proc. of Salzburg Conference (AAA81), J. Hayn, Klagenfurt 20 (2011), 11-18.
[4] N. Jacobson, Structure of Rings (Amer. Math. Soc., Colloq. Publ. 36 (rev. ed.), Providence, RI, 1964).
[5] J. Lambek, Lectures on Rings and Modules (Blaisdell Publ. Comp., Waltham, Massachusetts, Toronto, London, 1966).
[6] N.H. McCoy, Theory of Rings (Mainillan Comp., New York, 1964).