Distributive lattices of t-k-Archimedean semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 147-158.

Voir la notice de l'article provenant de la source Library of Science

A semiring S in ⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.
Keywords: k-radical, t-k-Archimedean semiring, completely prime k-ideal, semiprimary k-ideal
@article{DMGAA_2011_31_2_a1,
     author = {Mondal, Tapas},
     title = {Distributive lattices of {t-k-Archimedean} semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a1/}
}
TY  - JOUR
AU  - Mondal, Tapas
TI  - Distributive lattices of t-k-Archimedean semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 147
EP  - 158
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a1/
LA  - en
ID  - DMGAA_2011_31_2_a1
ER  - 
%0 Journal Article
%A Mondal, Tapas
%T Distributive lattices of t-k-Archimedean semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 147-158
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a1/
%G en
%F DMGAA_2011_31_2_a1
Mondal, Tapas. Distributive lattices of t-k-Archimedean semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a1/

[1] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, accepted for publication in Discuss. Math. General Algebra and Applications 31 (2011), 5-25.

[2] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010), 293-301. doi: 10.1007/s00233-009-9205-6

[3] S. Bogdanovic and M. Ciric, Semilattice of Archimedean semigroups and completely π-regular semigroups I (survey article), Filomat(nis) 7 (1993), 1-40.

[4] S. Bogdanovic and M. Ciric, Chains of Archimedean semigroups (Semiprimary semigroups), Indian J. Pure and Appl. Math. 25 (1994), 229-235.

[5] M. Ciric and S. Bogdanovic, Semilattice decompositions of semigroups, Semigroup Forum (1996), 119-132. doi: 10.1007/BF02574089

[6] A.H. Clifford, Semigroups admitting relative inverses, Annals of Math. 42 (1941), 1037-1049. doi: 10.2307/1968781

[7] F. Kmet, Radicals and their left ideal analogues in a semigroup, Math. Slovaca 38 (1988), 139-145.

[8] M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeitschr. 85 (1964), 68-82. doi: 10.1007/BF01114879

[9] M.S. Putcha, Semilattice decomposition of semigroups, Semigroup Forum 6 (1973), 12-34. doi: 10.1007/BF02389104

[10] T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780. doi: 10.3792/pja/1195522562

[11] T. Tamura, On Putcha's theorem concerning semilattice of archimedean semigroups, Semigroup Forum 4 (1972), 83-86. doi: 10.1007/BF02570773

[12] T. Tamura, Note on the greatest semilattice decomposition of semigroups, Semigroup Forum 4 (1972), 255-261. doi: 10.1007/BF02570795

[13] T. Tamura and N. Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112. doi: 10.2996/kmj/1138843534