Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2011_31_1_a3, author = {Walendziak, Andrzej}, title = {On maximal ideals of {pseudo-BCK-algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {61--73}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a3/} }
Walendziak, Andrzej. On maximal ideals of pseudo-BCK-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a3/
[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9
[2] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Commentationes Mathematicae 42 (2007), 117-126.
[3] G. Dymek and A. Walendziak, Fuzzy ideals of pseudo-BCK-algebras, submitted.
[4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Dordrecht-Boston-London 2000.
[5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, p. 961-968 in: 'The Proc. of the Fourth International Symp. on Economic Informatics', Bucharest, Romania 1999.
[6] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, p. 90-92 in: 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia 2000.
[7] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, p. 97-114 in: 'Proc. of DMTCS'01: Combinatorics, Computability and Logic', Springer, London 2001. doi: 10.1007/978-1-4471-0717-0_9
[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multiplae-Valued Logic 6 (2001), 95-135.
[9] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
[10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[11] R. Halaš and J. Kühr, Deductive systems and annihilators of pseudo-BCK algebras, Ital. J. Pure Appl. Math., submitted.
[12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22. doi: 10.3792/pja/1195522169
[13] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 71-130.
[14] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 575-629.
[15] A. Iorgulescu, Algebras of logic as BCK algebras, submitted.
[16] K. Isěki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonicae 21 (1976), 351-366.
[17] Y.B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 57 (2003), 265-270.
[18] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci 2007.
[19] J. Kühr, Representable pseudo-BCK-algebras and integral residuated lattices, Journal of Algebra 317 (2007), 354-364. doi: 10.1016/j.jalgebra.2007.07.003
[20] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002), 255-273.