Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2011_31_1_a2, author = {Balog, Krisztina and Skublics, Benedek}, title = {On congruence distributivity of ordered algebras with constants}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {47--59}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a2/} }
TY - JOUR AU - Balog, Krisztina AU - Skublics, Benedek TI - On congruence distributivity of ordered algebras with constants JO - Discussiones Mathematicae. General Algebra and Applications PY - 2011 SP - 47 EP - 59 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a2/ LA - en ID - DMGAA_2011_31_1_a2 ER -
%0 Journal Article %A Balog, Krisztina %A Skublics, Benedek %T On congruence distributivity of ordered algebras with constants %J Discussiones Mathematicae. General Algebra and Applications %D 2011 %P 47-59 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a2/ %G en %F DMGAA_2011_31_1_a2
Balog, Krisztina; Skublics, Benedek. On congruence distributivity of ordered algebras with constants. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a2/
[1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433-454. doi: 10.1017/S0305004100013463
[2] S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13 (1976), 200-212. doi: 10.1016/S0022-0000(76)80030-X
[3] I. Chajda, Congruence distributivity in varieties with constants, Arch. Math. (Brno) 22 (1986), 121-124.
[4] G. Czédli, On the lattice of congruence varieties of locally equational classes, Acta Sci. Math. (Szeged) 41 (1979), 39-45.
[5] G. Czédli, Notes on congruence implication, Archivum Math. (Brno) 27 (1991), 149-153.
[6] G. Czédli and E.K. Horváth, All congruence lattice identities implying modularity have Mal'tsev conditions, Algebra Universalis 50 (2003), 69-74. doi: 10.1007/s00012-003-1818-0
[7] G. Czédli, E.K. Horváth, P. Lipparini, Optimal Mal'tsev conditions for congruence modular varieties, Algebra Universalis 53 (2005), 267-279. doi: 10.1007/s00012-005-1893-5
[8] G. Czédli and A. Lenkehegyi, On congruence n-distributivity of ordered algebras, Acta Math. (Hung.) 41 (1983), 17-26. doi: 10.1007/BF01994057
[9] R. Freese and B. Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (2) (1976), 225-228. doi: 10.1007/BF02485830
[10] R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge 1987.
[11] G. Grätzer, Universal Algebra, Springer-Verlag (Berlin-Heidelberg-New York 1979).
[12] C. Herrmann and A.P. Huhn, Lattices of normal subgroups which are generated by frames, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 97-136.
[13] A.P. Huhn, Schwach distributive Verbände I, Acta Sci. Math. (Szeged) 33 (1972), 297-305.
[14] A.P. Huhn, Two notes on n-distributive lattices, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 137-147.
[15] A.P. Huhn, n-distributivity and some questions of the equational theory of lattices, Contributions to Universal Algebra, Colloq. Math. Soc. J. Bolyai North-Holland 17 (1977), 177-178.
[16] B. Jónsson, Congruence varieties, Algebra Universalis 10 (1980), 355-394. doi: 10.1007/BF02482916
[17] J.B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Univ. 4 (1974), 78-88.