Bi-ideals in k-regular and intra k-regular semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Library of Science

Here we introduce the k-bi-ideals in semirings and the intra k-regular semirings. An intra k-regular semiring S is a semiring whose additive reduct is a semilattice and for each a ∈ S there exists x ∈ S such that a + xa²x = xa²x. Also it is a semiring in which every k-ideal is semiprime. Our aim in this article is to characterize both the k-regular semirings and intra k-regular semirings using of k-bi-ideals.
Keywords: k-bi-ideals, k-ideals, semiprimary subsets, k-regular semirings, intra k-regular semirings
@article{DMGAA_2011_31_1_a0,
     author = {Bhuniya, Anjan and Jana, Kanchan},
     title = {Bi-ideals in k-regular and intra k-regular semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a0/}
}
TY  - JOUR
AU  - Bhuniya, Anjan
AU  - Jana, Kanchan
TI  - Bi-ideals in k-regular and intra k-regular semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 5
EP  - 23
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a0/
LA  - en
ID  - DMGAA_2011_31_1_a0
ER  - 
%0 Journal Article
%A Bhuniya, Anjan
%A Jana, Kanchan
%T Bi-ideals in k-regular and intra k-regular semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 5-23
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a0/
%G en
%F DMGAA_2011_31_1_a0
Bhuniya, Anjan; Jana, Kanchan. Bi-ideals in k-regular and intra k-regular semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a0/

[1] M.R. Adhikari, M.K. Sen and H.J. Weinert, On k-regular semirings, Bull.Cal.Math.Soc. 88 (1996), 141-144.

[2] S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163-170. doi: 10.1073/pnas.37.3.163

[3] R. Chinram and K. Tinpun, A note on minimal bi-ideals in ordered Γ-semigroups, International Math. Forum 4 (1) (2009), 1-5.

[4] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952), 624-625.

[5] M. Henricksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices (1958), 321.

[6] A. Iampan, On bi-ideals of semigroups, Lobachevskii J. Math 29 (2) (2008), 68-72. doi: 10.1134/S1995080208020042

[7] K.M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecan 16 (1969), 179-185.

[8] K.M. Kapp, Bi-ideals in associative rings and semigroups, Acta. Sci. Math. 33 (1972), 307-314.

[9] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sci. 112 (4) (2002), 4353-4354. doi: 10.1023/A:1020347003781

[10] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proceedings of the International Conference on Algebra and its Applicatipns (2002), 30-46.

[11] S. Lajos, On (m, n)-ideals of semigroups, Abstract of Second Hunger. Math. Congress I (1960), 42-44.

[12] S. Lajos, On the bi-ideals in semigroups, Proc. Japan. Acad. 45 (1969), 710-712. doi: 10.3792/pja/1195520625

[13] S. Lajos, On generalized bi-ideals in semigroups, Coll. Math. Soc. Janos Bolyai, Algebraic Theory of semigroups (G. Polak, Ed.), North-Holland 20 (1979), 335-340.

[14] S. Lajos and F. Szaaz, Bi-ideals in associative rings, Acta. Sci. Math. 32 (1971), 185-193.

[15] S. Li and Y. He, On semigroups whose bi-ideals are strongly prime, International J. Algebra 1 (6) (2007), 263-268.

[16] M. M. Miccoli, Bi-ideals in regular semigroups and orthogroups, Acta. Math. Hung. 47 (1-2) (1986), 3-6. doi: 10.1007/BF01949118

[17] J.V. Neumann, On regular rings, Proc. Nat. Acad. Sci. USA 22 (1936), 707-713. doi: 10.1073/pnas.22.12.707

[18] M.K. Sen and A.K. Bhuniya, Completely k-regular semirings, Bull. Cal. Math. Soc. 97 (2005), 455-466.

[19] M.K. Sen and A.K. Bhuniya, On Additive Idempotent k-Clifford Semirings, Southeast Asian Bulletin of Mathematics 32 (2008), 1149-1159.

[20] M.K. Sen and A.K. Bhuniya, On semirings whose additive reduct is semilattice, Communicated.

[21] X.Z. Xu and J.Y. Ma, A note on minimal bi-ideals in ordered semigroups, SEA Bull. Math. 27 (2003), 149-154.