On finite functions with non-trivial arity gap
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 217-245.

Voir la notice de l'article provenant de la source Library of Science

Given an n-ary k-valued function f, gap(f) denotes the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f.
Keywords: essential variable, identification minor, essential arity gap
@article{DMGAA_2010_30_2_a5,
     author = {Shtrakov, Slavcho and Koppitz, J\"org},
     title = {On finite functions with non-trivial arity gap},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {217--245},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a5/}
}
TY  - JOUR
AU  - Shtrakov, Slavcho
AU  - Koppitz, Jörg
TI  - On finite functions with non-trivial arity gap
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 217
EP  - 245
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a5/
LA  - en
ID  - DMGAA_2010_30_2_a5
ER  - 
%0 Journal Article
%A Shtrakov, Slavcho
%A Koppitz, Jörg
%T On finite functions with non-trivial arity gap
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 217-245
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a5/
%G en
%F DMGAA_2010_30_2_a5
Shtrakov, Slavcho; Koppitz, Jörg. On finite functions with non-trivial arity gap. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 217-245. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a5/

[1] J. Berman and A. Kisielewicz, On the number of operations in a clone, Proc. Amer. Math Soc. 122 (1994), 359-369. doi: 10.1090/S0002-9939-1994-1198450-9

[2] Yu. Breitbart, On the essential variables of functions in the algebra of logic, Dokl. Acad. Sci. USSR, (in Russian) 172 vol. 1 (1967), 9-10 .

[3] K. Chimev, Separable sets of arguments of functions, MTA SzTAKI Tanulmanyok, 180 (1986), 173.

[4] K. Chimev, On some properties of functions, Colloquia Mathematica Societatis Janos Bolyai, Szeged (1981), 97-110.

[5] M. Couceiro and E. Lehtonen, On the arity gap of finite functions: results and applications, Int. Conf. on Relations, Orders and Graphs: Interaction with Computer Science, Nouha Editions, Sfax, (2008), pp. 65-72, (http://www.math.tut.fi/algebra/papers/ROGICS08-CL.pdf).

[6] M. Couceiro and E. Lehtonen, Generalizations of Swierczkowski's lemma and the arity gap of finite functions, Discrete Mathematics, (2009),. doi: 10.1016/j.disc.2009.04.009.

[7] K. Denecke and J. Koppitz, Essential variables in hypersubstitutions, Algebra Universalis 46 (2001), 443-454. doi: 10.1007/PL00000353

[8] D. Kovachev, On a class of discrete functions, Acta Cybernetica, (Szeged) 17 (3) (2006), 513-519.

[9] O. Lupanov, On a class of schemes of functional elements, Problemi Kybernetiki (in Russian) 9 (1963), 333-335.

[10] A. Salomaa, On essential variables of functions, especially in the algebra of logic, Annales Academia Scientiarum Fennicae, Ser. A 333 (1963), 1-11.

[11] Sl. Shtrakov and K. Denecke, Essential variables and separable sets in universal algebra, Taylor Francis, Multiple-Valued Logic 8 (2) (2002), 165-182.

[12] Sl. Shtrakov, Essential variables and positions in terms, Algebra Universalis 61 (3-4) (2009), 381-397. doi: 10.1007/s00012-009-0023-1

[13] Sl. Shtrakov, Tree automata and essential input variables, Contributions to General Algebra, Verlag Johannes Heyn, Klagenfurt 13 (2001), 309-320.

[14] Sl. Shtrakov, Essential arity gap of Boolean functions, Serdica Journal of Computing 2 (3) (2008), 249-266.

[15] R. Willard, Essential arities of term operations in finite algebras, Discrete Mathematics 149 (1996), 239-259. doi: 10.1016/0012-365X(94)00323-B