Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2010_30_2_a4, author = {Chajda, Ivan}, title = {Congruences on semilattices with section antitone involutions}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {207--215}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/} }
TY - JOUR AU - Chajda, Ivan TI - Congruences on semilattices with section antitone involutions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2010 SP - 207 EP - 215 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/ LA - en ID - DMGAA_2010_30_2_a4 ER -
Chajda, Ivan. Congruences on semilattices with section antitone involutions. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 207-215. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/
[1] J.C. Abbott, Semi-boolean algebras, Matem. Vestnik 4 (1967), 177-198.
[2] J.C. Abbott, Orthoimplication algebras, Studia Logica 35 (1976), 173-177. doi: 10.1007/BF02120879
[3] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carol. 44 (2003), 577-585.
[4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag (Lemgo, Germany), 220pp., 2003, ISBN 3-88538-226-1.
[5] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 228pp., 2007, ISBN 978-3-88538-230-0.
[6] I. Chajda, R. Halaš and J. Kühr, Implication in MV-algebras, Algebra Universalis 53 (2005), 377-382. doi: 10.1007/s00012-004-1862-4