Congruences on semilattices with section antitone involutions
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 207-215.

Voir la notice de l'article provenant de la source Library of Science

We deal with congruences on semilattices with section antitone involution which rise e.g., as implication reducts of Boolean algebras, MV-algebras or basic algebras and which are included among implication algebras, orthoimplication algebras etc. We characterize congruences by their kernels which coincide with semilattice filters satisfying certain natural conditions. We prove that these algebras are congruence distributive and 3-permutable.
Keywords: semilattice, section, antitone involution, congruence kernel, filter, congruence distributivity, 3-permutability
@article{DMGAA_2010_30_2_a4,
     author = {Chajda, Ivan},
     title = {Congruences on semilattices with section antitone involutions},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {207--215},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Congruences on semilattices with section antitone involutions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 207
EP  - 215
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/
LA  - en
ID  - DMGAA_2010_30_2_a4
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Congruences on semilattices with section antitone involutions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 207-215
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/
%G en
%F DMGAA_2010_30_2_a4
Chajda, Ivan. Congruences on semilattices with section antitone involutions. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 207-215. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a4/

[1] J.C. Abbott, Semi-boolean algebras, Matem. Vestnik 4 (1967), 177-198.

[2] J.C. Abbott, Orthoimplication algebras, Studia Logica 35 (1976), 173-177. doi: 10.1007/BF02120879

[3] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carol. 44 (2003), 577-585.

[4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag (Lemgo, Germany), 220pp., 2003, ISBN 3-88538-226-1.

[5] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 228pp., 2007, ISBN 978-3-88538-230-0.

[6] I. Chajda, R. Halaš and J. Kühr, Implication in MV-algebras, Algebra Universalis 53 (2005), 377-382. doi: 10.1007/s00012-004-1862-4