Semigroup of Contractions of Wreath Products of Metric Spaces
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Library of Science

In this paper semigroups of contractions of metric spaces are considered. The semigroup of contractions of the wreath product of metric spaces is calculated.
Keywords: metric space, wreath product, semigroup of contractions
@article{DMGAA_2010_30_1_a1,
     author = {Oliynyk, Bogdana},
     title = {Semigroup of {Contractions} of {Wreath} {Products} of {Metric} {Spaces}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a1/}
}
TY  - JOUR
AU  - Oliynyk, Bogdana
TI  - Semigroup of Contractions of Wreath Products of Metric Spaces
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 35
EP  - 43
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a1/
LA  - en
ID  - DMGAA_2010_30_1_a1
ER  - 
%0 Journal Article
%A Oliynyk, Bogdana
%T Semigroup of Contractions of Wreath Products of Metric Spaces
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 35-43
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a1/
%G en
%F DMGAA_2010_30_1_a1
Oliynyk, Bogdana. Semigroup of Contractions of Wreath Products of Metric Spaces. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a1/

[1] F. Harary, On the group of the composition of two graphs, Duke Math J. 26 (1959), 47-51. doi: 10.1215/S0012-7094-59-02603-1

[2] G. Sabidussi, The composition of graphs, Duke Math J. 26 (1959), 693-696. doi: 10.1215/S0012-7094-59-02667-5

[3] I.J. Shoenberg, Metric spaces and completely monotone functions, The Annals of Mathematics 39 (4) (1938), 811-841. doi: 10.2307/1968466

[4] B. Oliynyk, Isometry groups of wreath products of metric spaces, Algebra and Discrete Mathematics 4 (2007), 123-130.

[5] I.D. Meldrum, Wreath products of groups and semigroups, New York, Longman 1995.

[6] A. Oliinyk, On Free Semigroups of Automaton Transformations, Mathematical Notes 63 (2) (1998), 248-259. doi: 10.1007/BF02308761

[7] J. Rhodes, Monoids acting on trees: Elliptic and wreath products and the holonomy theorem for arbitrary monoids with applications to infinite groups, Int. J. Algebra Comput. 1 (2) (1991), 253-279. doi: 10.1142/S0218196791000171