The maximal subsemigroups of the ideals of some semigroups of partial injections
Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 153-167.

Voir la notice de l'article provenant de la source Library of Science

We study the structure of the ideals of the semigroup IO_n of all isotone (order-preserving) partial injections as well as of the semigroup IM_n of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of IO_n and IM_n.
Keywords: finite transformation semigroup, isotone and monotone partial transformations, maximal subsemigroups
@article{DMGAA_2009_29_2_a3,
     author = {Dimitrova, Ilinka and Koppitz, J\"org},
     title = {The maximal subsemigroups of the ideals of some semigroups of partial injections},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {153--167},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/}
}
TY  - JOUR
AU  - Dimitrova, Ilinka
AU  - Koppitz, Jörg
TI  - The maximal subsemigroups of the ideals of some semigroups of partial injections
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2009
SP  - 153
EP  - 167
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/
LA  - en
ID  - DMGAA_2009_29_2_a3
ER  - 
%0 Journal Article
%A Dimitrova, Ilinka
%A Koppitz, Jörg
%T The maximal subsemigroups of the ideals of some semigroups of partial injections
%J Discussiones Mathematicae. General Algebra and Applications
%D 2009
%P 153-167
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/
%G en
%F DMGAA_2009_29_2_a3
Dimitrova, Ilinka; Koppitz, Jörg. The maximal subsemigroups of the ideals of some semigroups of partial injections. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/

[1] A.Ja. Aĭzenštat, Defining Relations of the Semigroup of Endomorphisms of a Finite Linearly Ordered Set, Sibirsk. Matem. Žurn. 3 (1962), 161-169.

[2] M. Delgado and V.H. Fernandes, Abelian Kernels of Some Monoids of Injective Partial Transformations and an Application, Semigroup Forum 61 (2000), 435-452.

[3] M. Delgado and V.H. Fernandes, Abelian Kernels of Monoids of Order-Preserving Maps and of Some of Its Extensions, Semigroup Forum 68 (2004), 335-356.

[4] I. Dimitrova and J. Koppitz, On the Maximal Subsemigroups of Some Transformation Semigroups, Asian-European Journal of Mathematics 1 (2) (2008), 189-202.

[5] I. Dimitrova and J. Koppitz, The Maximal Subsemigroups of the Semigroup of all Monotone Partial Injections, Communications in Algebra, submited.

[6] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: a new class of divisors, Semigroup Forum 54 (2)(1997), 230-236.

[7] V.H. Fernandes, The Monoid of All Injective Order-preserving Partial Transformations on a Finite Chain, Semigroup Forum 62 (2001), 178-204.

[8] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: another class of divisors, Izvestiya VUZ Matematika 3 (478) (2002), 51-59.

[9] V.H. Fernandes, Presentations for Some Monoids of Partial Transformations on a Finite Chain: a survey, Semigroups, Algorithms, Automata and Languages, World Scientific (2002), 363-378.

[10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604.

[11] V.H. Fernandes G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Injective Partial Transformations on a Finite Chain, Southeast Asian Bull. Math. 28 (2004), 903-918.

[12] O. Ganyushkin and V. Mazorchuk, On the Structure of $IO_n$, Semigroup Forum 66 (2003), 455-483.

[13] G.M.S. Gomes and J.M. Howie, On the Rank of Certain Semigroups of Order-preserving Transformations, Semigroup Forum 51 (1992), 275-282.

[14] J.M. Howie, Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236.

[15] J.M. Howie and B.M. Shein, Products of Idempotent Order-Preserving Transformations, J. London Math. Soc. 7 (2) (1973), 357-366.

[16] L.M. Popova, Defining Relations of the Semigroup of Partial Endomorphisms of a Finite Linearly Ordered Set, Leningrad Gos. Ped. Inst. Učen. Zap. 238 (1962), 78-88.

[17] X. Yang, A Classiffication of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513.

[18] X. Yang and Ch. Lu, Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (2000), 3125-3135.