Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2009_29_2_a3, author = {Dimitrova, Ilinka and Koppitz, J\"org}, title = {The maximal subsemigroups of the ideals of some semigroups of partial injections}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {153--167}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/} }
TY - JOUR AU - Dimitrova, Ilinka AU - Koppitz, Jörg TI - The maximal subsemigroups of the ideals of some semigroups of partial injections JO - Discussiones Mathematicae. General Algebra and Applications PY - 2009 SP - 153 EP - 167 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/ LA - en ID - DMGAA_2009_29_2_a3 ER -
%0 Journal Article %A Dimitrova, Ilinka %A Koppitz, Jörg %T The maximal subsemigroups of the ideals of some semigroups of partial injections %J Discussiones Mathematicae. General Algebra and Applications %D 2009 %P 153-167 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/ %G en %F DMGAA_2009_29_2_a3
Dimitrova, Ilinka; Koppitz, Jörg. The maximal subsemigroups of the ideals of some semigroups of partial injections. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a3/
[1] A.Ja. Aĭzenštat, Defining Relations of the Semigroup of Endomorphisms of a Finite Linearly Ordered Set, Sibirsk. Matem. Žurn. 3 (1962), 161-169.
[2] M. Delgado and V.H. Fernandes, Abelian Kernels of Some Monoids of Injective Partial Transformations and an Application, Semigroup Forum 61 (2000), 435-452.
[3] M. Delgado and V.H. Fernandes, Abelian Kernels of Monoids of Order-Preserving Maps and of Some of Its Extensions, Semigroup Forum 68 (2004), 335-356.
[4] I. Dimitrova and J. Koppitz, On the Maximal Subsemigroups of Some Transformation Semigroups, Asian-European Journal of Mathematics 1 (2) (2008), 189-202.
[5] I. Dimitrova and J. Koppitz, The Maximal Subsemigroups of the Semigroup of all Monotone Partial Injections, Communications in Algebra, submited.
[6] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: a new class of divisors, Semigroup Forum 54 (2)(1997), 230-236.
[7] V.H. Fernandes, The Monoid of All Injective Order-preserving Partial Transformations on a Finite Chain, Semigroup Forum 62 (2001), 178-204.
[8] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: another class of divisors, Izvestiya VUZ Matematika 3 (478) (2002), 51-59.
[9] V.H. Fernandes, Presentations for Some Monoids of Partial Transformations on a Finite Chain: a survey, Semigroups, Algorithms, Automata and Languages, World Scientific (2002), 363-378.
[10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604.
[11] V.H. Fernandes G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Injective Partial Transformations on a Finite Chain, Southeast Asian Bull. Math. 28 (2004), 903-918.
[12] O. Ganyushkin and V. Mazorchuk, On the Structure of $IO_n$, Semigroup Forum 66 (2003), 455-483.
[13] G.M.S. Gomes and J.M. Howie, On the Rank of Certain Semigroups of Order-preserving Transformations, Semigroup Forum 51 (1992), 275-282.
[14] J.M. Howie, Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236.
[15] J.M. Howie and B.M. Shein, Products of Idempotent Order-Preserving Transformations, J. London Math. Soc. 7 (2) (1973), 357-366.
[16] L.M. Popova, Defining Relations of the Semigroup of Partial Endomorphisms of a Finite Linearly Ordered Set, Leningrad Gos. Ped. Inst. Učen. Zap. 238 (1962), 78-88.
[17] X. Yang, A Classiffication of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513.
[18] X. Yang and Ch. Lu, Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (2000), 3125-3135.