Hyperidentities in many-sorted algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 47-74.

Voir la notice de l'article provenant de la source Library of Science

The theory of hyperidentities generalizes the equational theory of universal algebras and is applicable in several fields of science, especially in computers sciences (see e.g. [2,1]). The main tool to study hyperidentities is the concept of a hypersubstitution. Hypersubstitutions of many-sorted algebras were studied in [3]. On the basis of hypersubstitutions one defines a pair of closure operators which turns out to be a conjugate pair. The theory of conjugate pairs of additive closure operators can be applied to characterize solid varieties, i.e., varieties in which every identity is satisfied as a hyperidentity (see [4]). The aim of this paper is to apply the theory of conjugate pairs of additive closure operators to many-sorted algebras.
Keywords: hypersubstitution, hyperidentity, heterogeneous algebra
@article{DMGAA_2009_29_1_a3,
     author = {Denecke, Klaus and Lekkoksung, Somsak},
     title = {Hyperidentities in many-sorted algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {47--74},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a3/}
}
TY  - JOUR
AU  - Denecke, Klaus
AU  - Lekkoksung, Somsak
TI  - Hyperidentities in many-sorted algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2009
SP  - 47
EP  - 74
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a3/
LA  - en
ID  - DMGAA_2009_29_1_a3
ER  - 
%0 Journal Article
%A Denecke, Klaus
%A Lekkoksung, Somsak
%T Hyperidentities in many-sorted algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2009
%P 47-74
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a3/
%G en
%F DMGAA_2009_29_1_a3
Denecke, Klaus; Lekkoksung, Somsak. Hyperidentities in many-sorted algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 47-74. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a3/

[1] P. Baltazar, M-Solid Varieties of Languages, Acta Cybernetica 18 (2008) 719-731.

[2] K. Denecke and S. L. Wismath, Hyperidenties and Clones, Gordon and Breach, 2000.

[3] K. Denecke and S. Lekkoksung, Hypersubstitutions of Many-Sorted Algebras, Asian-European J. Math. Vol. I (3) (2008) 337-346.

[4] J. Koppitz and K. Denecke, M-solid Varieties of Algebras, Springer 2005.

[5] H. Lugowski, Grundzüge der Universellen Algebra, Teubner-Verlag, Leipzig 1976.