On the matrix negative Pell equation
Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 35-45.

Voir la notice de l'article provenant de la source Library of Science

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries.
Keywords: the matrix negative Pell equation, powers matrices
@article{DMGAA_2009_29_1_a2,
     author = {Grytczuk, Aleksander and Kurzyd{\l}o, Izabela},
     title = {On the matrix negative {Pell} equation},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {35--45},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a2/}
}
TY  - JOUR
AU  - Grytczuk, Aleksander
AU  - Kurzydło, Izabela
TI  - On the matrix negative Pell equation
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2009
SP  - 35
EP  - 45
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a2/
LA  - en
ID  - DMGAA_2009_29_1_a2
ER  - 
%0 Journal Article
%A Grytczuk, Aleksander
%A Kurzydło, Izabela
%T On the matrix negative Pell equation
%J Discussiones Mathematicae. General Algebra and Applications
%D 2009
%P 35-45
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a2/
%G en
%F DMGAA_2009_29_1_a2
Grytczuk, Aleksander; Kurzydło, Izabela. On the matrix negative Pell equation. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 35-45. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a2/

[1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643.

[2] R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631.

[3] A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 .

[4] A. Grytczuk, On a conjecture about the equation $A^{mx} + A^{my} =A^{mz}$, Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70.

[5] A. Grytczuk and J. Grytczuk, Ljunggren's trinomials and matrix equation $A^{x} + A^{y} = A^{z}$, Tsukuba J. Math. 2 (2002), 229-235.

[6] A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990.

[7] A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94.

[8] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.

[9] I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted.

[10] M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222.

[11] Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494.

[12] H. Qin, Fermat's problem and Goldbach problem over $M_{n}(Z)$, Linear Algebra App., 236 (1996), 131-135.

[13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979.

[14] N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.