Horizontal sums of basic algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 21-33.

Voir la notice de l'article provenant de la source Library of Science

The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.
Keywords: Basic algebra, horizontal sum, chain basic algebra, MV-algebra, Boolean algebra
@article{DMGAA_2009_29_1_a1,
     author = {Chajda, Ivan},
     title = {Horizontal sums of basic algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Horizontal sums of basic algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2009
SP  - 21
EP  - 33
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a1/
LA  - en
ID  - DMGAA_2009_29_1_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Horizontal sums of basic algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2009
%P 21-33
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a1/
%G en
%F DMGAA_2009_29_1_a1
Chajda, Ivan. Horizontal sums of basic algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a1/

[1] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585.

[2] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0.

[3] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9.

[4] I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30.

[5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000.

[6] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346.

[7] Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237.

[8] N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449