Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2008_28_2_a7, author = {Kola\v{r}{\'\i}k, Miroslav}, title = {Normalization of basic algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {237--249}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/} }
Kolařík, Miroslav. Normalization of basic algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/
[1] I. Chajda, Lattices in quasiordered sets, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 31 (1992), 6-12.
[2] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, pp. 35-46 in: General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin 1995.
[3] I. Chajda, Normally presentable varieties, Algebra Universalis 34 (1995), 327-335.
[4] I. Chajda and E. Graczyńska, Algebras presented by normal identities, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 38 (1999), 49-58.
[5] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis, DOI 10.1007/s00012-008-2086-9.
[6] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 2007, ISBN 978-3-88538-230-0.
[7] I. Chajda, R. Halaš, J. Kühr and A. Vanžurová, Normalization of MV-algebras, Mathematica Bohemica 130 (2005), 283-300.
[8] I. Chajda and M. Kolařík, Independence of axiom system of basic algebras, Soft Computing, DOI 10.1007/s00500-008-0291-2.
[9] I. Mel'nik, Nilpotent shifts of varieties, Math. Notes 14 (1973), 692-696 (in Russian).