Normalization of basic algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 237-249.

Voir la notice de l'article provenant de la source Library of Science

We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.
Keywords: basic algebra, section antitone involution, q-lattice, normalization of a variety
@article{DMGAA_2008_28_2_a7,
     author = {Kola\v{r}{\'\i}k, Miroslav},
     title = {Normalization of basic algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/}
}
TY  - JOUR
AU  - Kolařík, Miroslav
TI  - Normalization of basic algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 237
EP  - 249
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/
LA  - en
ID  - DMGAA_2008_28_2_a7
ER  - 
%0 Journal Article
%A Kolařík, Miroslav
%T Normalization of basic algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 237-249
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/
%G en
%F DMGAA_2008_28_2_a7
Kolařík, Miroslav. Normalization of basic algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a7/

[1] I. Chajda, Lattices in quasiordered sets, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 31 (1992), 6-12.

[2] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, pp. 35-46 in: General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin 1995.

[3] I. Chajda, Normally presentable varieties, Algebra Universalis 34 (1995), 327-335.

[4] I. Chajda and E. Graczyńska, Algebras presented by normal identities, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 38 (1999), 49-58.

[5] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis, DOI 10.1007/s00012-008-2086-9.

[6] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 2007, ISBN 978-3-88538-230-0.

[7] I. Chajda, R. Halaš, J. Kühr and A. Vanžurová, Normalization of MV-algebras, Mathematica Bohemica 130 (2005), 283-300.

[8] I. Chajda and M. Kolařík, Independence of axiom system of basic algebras, Soft Computing, DOI 10.1007/s00500-008-0291-2.

[9] I. Mel'nik, Nilpotent shifts of varieties, Math. Notes 14 (1973), 692-696 (in Russian).