Positive splittings of matrices and their nonnegative Moore-Penrose inverses
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 227-235.

Voir la notice de l'article provenant de la source Library of Science

In this short note we study necessary and sufficient conditions for the nonnegativity of the Moore-Penrose inverse of a real matrix in terms of certain spectral property shared by all positive splittings of the given matrix.
Keywords: Moore-Penrose inverse, positive splitting
@article{DMGAA_2008_28_2_a6,
     author = {Kurmayya, Tamminana and Sivakumar, Koratti},
     title = {Positive splittings of matrices and their nonnegative {Moore-Penrose} inverses},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {227--235},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a6/}
}
TY  - JOUR
AU  - Kurmayya, Tamminana
AU  - Sivakumar, Koratti
TI  - Positive splittings of matrices and their nonnegative Moore-Penrose inverses
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 227
EP  - 235
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a6/
LA  - en
ID  - DMGAA_2008_28_2_a6
ER  - 
%0 Journal Article
%A Kurmayya, Tamminana
%A Sivakumar, Koratti
%T Positive splittings of matrices and their nonnegative Moore-Penrose inverses
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 227-235
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a6/
%G en
%F DMGAA_2008_28_2_a6
Kurmayya, Tamminana; Sivakumar, Koratti. Positive splittings of matrices and their nonnegative Moore-Penrose inverses. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 227-235. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a6/

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, Springer Verlag, New York 2003.

[2] A. Berman and R.J. Plemmons, Monotonocity and the generalized inverse, SIAM J. Appl. Math. 22 (1972), 155-161.

[3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, SIAM 1994.

[4] L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York 1966.

[5] M.I. Gil, On positive invertibility of matrices, Positivity 2 (1998), 65-170.

[6] M.I. Gil, On invertibility and positive invertibility of matrices, Lin. Alg. Appl. 327 (2001), 95-104.

[7] M.A. Krasnosel'skij, J.A. Lifshits and A.V. Sobolev, Positive linear systems, Heldermann Verlag, Berlin 1989.

[8] T. Kurmayya, Nonnegative Moore-Penrose inverses of operators between Hilbert spaces, Ph.D. Dissertation, Indian Institute of Technology Madras, Submitted, December 2007.

[9] T. Kurmayya and K.C. Sivakumar, Nonnegative Moore-Penrose inverses of operators over Hilbert spaces, Positivity, Online First, DOI 10.1007/s11117-007-2173-8.

[10] O.L. Mangasarian, Characterizations of real matrices of monotone kind, SIAM. Rev. 10 (1968), 439-441.

[11] J.E. Peris, A new characterization of inverse-positive matrices, Lin. Alg. Appl. 154-156 (1991), 45-58.

[12] M. Weber, On the Positiveness of the Inverse Operator, Math. Nachr. 163 (1993), 14-5-149. Erratum, Math. Nachr. 171 (1995), 325-326.