On covariety lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 179-191.

Voir la notice de l'article provenant de la source Library of Science

This paper shows basic properties of covariety lattices. Such lattices are shown to be infinitely distributive. The covariety lattice L_CV(K) of subcovarieties of a covariety K of F-coalgebras, where F:Set → Set preserves arbitrary intersections is isomorphic to the lattice of subcoalgebras of a P_κ-coalgebra for some cardinal κ. A full description of the covariety lattice of Id-coalgebras is given. For any topology τ there exist a bounded functor F:Set → Set and a covariety K of F-coalgebras, such that L_CV(K) is isomorphic to the lattice (τ,∪,∩) of open sets of τ.
Keywords: coalgebra, covariety, coalgebraic logic
@article{DMGAA_2008_28_2_a3,
     author = {Brengos, Tomasz},
     title = {On covariety lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a3/}
}
TY  - JOUR
AU  - Brengos, Tomasz
TI  - On covariety lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 179
EP  - 191
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a3/
LA  - en
ID  - DMGAA_2008_28_2_a3
ER  - 
%0 Journal Article
%A Brengos, Tomasz
%T On covariety lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 179-191
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a3/
%G en
%F DMGAA_2008_28_2_a3
Brengos, Tomasz. On covariety lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 179-191. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a3/

[1] M. Barr, Terminal Coalgebras in Well-founded Set Theory, Theoretical Computer Science 144 (2) (1993), 299-315.

[2] H.P. Gumm, Elements of the General Theory of Coalgebras, LUATCS'99, Rand Africaans University, Johannesburg, South Africa 1999.

[3] H.P. Gumm, Functors for coalgebras, Algebra Universalis 45 (2-3) (2001), 135-147.

[4] H.P. Gumm and T. Schröder, Coalgebras of bounded type, Mathematical Structures in Computer Science 12 (5) (2002), 565-578.

[5] H.P. Gumm, From T-coalgebras to filter structures and transtion systems, CALCO 2005, Springer Lecture Notes in Computer Science (LNCS) 3629, 2005.