Wreath product of a semigroup and a Γ-semigroup
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 161-178
Voir la notice de l'article provenant de la source Library of Science
Let S = a,b,c,... and Γ = α,β,γ,... be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.
Keywords:
semigroup, Γ-semigroup, orthodox semigroup, right(left) orthodox Γ-semigroup, right(left) inverse semigroup, right(left) inverse Γ-semigroup, right(left)α-unity, Γ-group, semidirect product, wreath product
@article{DMGAA_2008_28_2_a2,
author = {Sen, Mridul and Chattopadhyay, Sumanta},
title = {Wreath product of a semigroup and a {\ensuremath{\Gamma}-semigroup}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {161--178},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/}
}
TY - JOUR AU - Sen, Mridul AU - Chattopadhyay, Sumanta TI - Wreath product of a semigroup and a Γ-semigroup JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 161 EP - 178 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/ LA - en ID - DMGAA_2008_28_2_a2 ER -
Sen, Mridul; Chattopadhyay, Sumanta. Wreath product of a semigroup and a Γ-semigroup. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 161-178. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/