Wreath product of a semigroup and a Γ-semigroup
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 161-178.

Voir la notice de l'article provenant de la source Library of Science

Let S = a,b,c,... and Γ = α,β,γ,... be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.
Keywords: semigroup, Γ-semigroup, orthodox semigroup, right(left) orthodox Γ-semigroup, right(left) inverse semigroup, right(left) inverse Γ-semigroup, right(left)α-unity, Γ-group, semidirect product, wreath product
@article{DMGAA_2008_28_2_a2,
     author = {Sen, Mridul and Chattopadhyay, Sumanta},
     title = {Wreath product of a semigroup and a {\ensuremath{\Gamma}-semigroup}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/}
}
TY  - JOUR
AU  - Sen, Mridul
AU  - Chattopadhyay, Sumanta
TI  - Wreath product of a semigroup and a Γ-semigroup
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 161
EP  - 178
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/
LA  - en
ID  - DMGAA_2008_28_2_a2
ER  - 
%0 Journal Article
%A Sen, Mridul
%A Chattopadhyay, Sumanta
%T Wreath product of a semigroup and a Γ-semigroup
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 161-178
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/
%G en
%F DMGAA_2008_28_2_a2
Sen, Mridul; Chattopadhyay, Sumanta. Wreath product of a semigroup and a Γ-semigroup. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 161-178. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a2/

[1] S. Chattopadhyay, Right Inverse Γ-semigroup, Bull. Cal. Math. Soc. 93 (2001), 435-442.

[2] S. Chattopadhyay, Right Orthodox Γ-semigroup, Southeast Asian Bull. of Math 29 (2005), 23-30.

[3] J.M. Howie, An introduction to semigroup theory, Academic Press 1976.

[4] W.R. Nico, On the regularity of semidirect products, J. Algebra 80 (1983), 29-36.

[5] T. Saito, Orthodox semidirect product and wreath products of semigroups, Semigroup Forum 38 (1989), 347-354.

[6] M.K. Sen and S. Chattopadhyay, Semidirect Product of a Semigroup and a Γ-semigroup, East-West J. of Math. 6 (2) (2004), 131-138.

[7] M.K. Sen and N.K Saha, On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986), 181-186.

[8] P.S. Venkatesan, Right(left) inverse semigroup, J. of Algebra (1974), 209-217.

[9] R. Zhang, A Note on Orthodox Semidirect Products and Wreath Products of Monoids, Semigroup Forum 58 (1999), 262-266.