Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2008_28_2_a0, author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav}, title = {A common approach to directoids with an antitone involution and {D-quasirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {139--145}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a0/} }
TY - JOUR AU - Chajda, Ivan AU - Kolařík, Miroslav TI - A common approach to directoids with an antitone involution and D-quasirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 139 EP - 145 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a0/ LA - en ID - DMGAA_2008_28_2_a0 ER -
%0 Journal Article %A Chajda, Ivan %A Kolařík, Miroslav %T A common approach to directoids with an antitone involution and D-quasirings %J Discussiones Mathematicae. General Algebra and Applications %D 2008 %P 139-145 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a0/ %G en %F DMGAA_2008_28_2_a0
Chajda, Ivan; Kolařík, Miroslav. A common approach to directoids with an antitone involution and D-quasirings. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 139-145. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a0/
[1] G. Birkhoff, Lattice Theory, (3rd edition), Colloq. Publ. 25, Proc. Amer. Math. Soc., Providence, R. I., 1967.
[2] I. Chajda and M. Kolařík, Directoids with an antitone involution, Comment. Math. Univ. Carolinae (CMUC) 48 (2007), 555-567.
[3] I. Chajda and H. Länger, A common generalization of ortholattices and Boolean quasirings, Demonstratio Math. 15 (2007), 769-774.
[4] H. Dobbertin, Note on associative Newman algebras, Algebra Universalis 9 (1979), 396-397.
[5] D. Dorninger, H. Länger andM. Mączyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[6] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69.