On some properties of Chebyshev polynomials
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 121-133.

Voir la notice de l'article provenant de la source Library of Science

Letting T_n (resp. U_n) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences (X^kT_n-k)_k and (X^kU_n-k)_k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space _n[X] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T_n and U_n admit remarkableness integer coordinates on each of the two basis.
Keywords: Chebyshev polynomials, integer coordinates
@article{DMGAA_2008_28_1_a6,
     author = {Belbachir, Hac\`ene and Bencherif, Farid},
     title = {On some properties of {Chebyshev} polynomials},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/}
}
TY  - JOUR
AU  - Belbachir, Hacène
AU  - Bencherif, Farid
TI  - On some properties of Chebyshev polynomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 121
EP  - 133
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/
LA  - en
ID  - DMGAA_2008_28_1_a6
ER  - 
%0 Journal Article
%A Belbachir, Hacène
%A Bencherif, Farid
%T On some properties of Chebyshev polynomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 121-133
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/
%G en
%F DMGAA_2008_28_1_a6
Belbachir, Hacène; Bencherif, Farid. On some properties of Chebyshev polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 121-133. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/

[1] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (A12) (2006), 1-17.

[2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.

[3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990.