On some properties of Chebyshev polynomials
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 121-133
Cet article a éte moissonné depuis la source Library of Science
Letting T_n (resp. U_n) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences (X^kT_n-k)_k and (X^kU_n-k)_k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space _n[X] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T_n and U_n admit remarkableness integer coordinates on each of the two basis.
Keywords:
Chebyshev polynomials, integer coordinates
@article{DMGAA_2008_28_1_a6,
author = {Belbachir, Hac\`ene and Bencherif, Farid},
title = {On some properties of {Chebyshev} polynomials},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {121--133},
year = {2008},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/}
}
TY - JOUR AU - Belbachir, Hacène AU - Bencherif, Farid TI - On some properties of Chebyshev polynomials JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 121 EP - 133 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/ LA - en ID - DMGAA_2008_28_1_a6 ER -
Belbachir, Hacène; Bencherif, Farid. On some properties of Chebyshev polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 121-133. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a6/
[1] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (A12) (2006), 1-17.
[2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.
[3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990.