The greatest regular-solid variety of semigroups % Dedicated to R. McKenzie's 60$^th$ birthday %
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 91-119.

Voir la notice de l'article provenant de la source Library of Science

A regular hypersubstitution is a mapping which takes every n_i-ary operation symbol to an n_i-ary term. A variety is called regular-solid if it contains all algebras derived by regular hypersubstitutions. We determine the greatest regular-solid variety of semigroups. This result will be used to give a new proof for the equational description of the greatest solid variety of semigroups. We show that every variety of semigroups which is finitely based by hyperidentities is also finitely based by identities.
Keywords: hypersubstitutions, terms, regular-solid variety, solid variety, finite axiomatizability
@article{DMGAA_2008_28_1_a5,
     author = {Denecke, Klaus and Koppitz, J\"org and Pabhapote, Nittiya},
     title = {The greatest regular-solid variety of semigroups % {Dedicated} to {R.} {McKenzie's} 60$^th$ birthday %},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {91--119},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a5/}
}
TY  - JOUR
AU  - Denecke, Klaus
AU  - Koppitz, Jörg
AU  - Pabhapote, Nittiya
TI  - The greatest regular-solid variety of semigroups % Dedicated to R. McKenzie's 60$^th$ birthday %
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 91
EP  - 119
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a5/
LA  - en
ID  - DMGAA_2008_28_1_a5
ER  - 
%0 Journal Article
%A Denecke, Klaus
%A Koppitz, Jörg
%A Pabhapote, Nittiya
%T The greatest regular-solid variety of semigroups % Dedicated to R. McKenzie's 60$^th$ birthday %
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 91-119
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a5/
%G en
%F DMGAA_2008_28_1_a5
Denecke, Klaus; Koppitz, Jörg; Pabhapote, Nittiya. The greatest regular-solid variety of semigroups % Dedicated to R. McKenzie's 60$^th$ birthday %. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 91-119. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a5/

[1] Sr. Arworn, Groupoids of Hypersubstitutions and G-solid Varieties, Shaker-Verlag, Aachen 2000.

[2] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers 2000.

[3] O.C. Kharlampovitsch and M.V. Sapir, Algorithmic problems in varieties, Int. J. Algebra and Computation 5 (1995), 379-602.

[4] J. Koppitz and K. Denecke, M-solid Varieties of Algebras, Springer 2006.

[5] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1968), 298-314.

[6] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 421-436 in: 'Proceedings of the International Conference Summer School on General Algebra and Ordered Sets', Olomouc 1994.

[7] L. Polák, On Hyperassociativity, Algebra Universalis 36 (3) (1996), 363-378.

[8] L. Polák, All solid varieties of semigroups, J. of Algebra 2 (1999), 421-436.

[9] D. Schweigert, Hyperidentities, pp. 405-506 in: Algebras and Orders, Kluwer 1993.