Distributive differential modals
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 29-47.

Voir la notice de l'article provenant de la source Library of Science

A differential modal is an algebra with two binary operations such that one of the reducts is a differential groupoid and the other is a semilattice, and with the groupoid operation distributing over the semilattice operation. The aim of this paper is to show that the varieties of entropic and distributive differential modals coincide, and to describe the lattice of varieties of entropic differential modals.
Keywords: differential groupoid, mode, modal
@article{DMGAA_2008_28_1_a1,
     author = {\'Slusarska, Karolina},
     title = {Distributive differential modals},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {29--47},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a1/}
}
TY  - JOUR
AU  - Ślusarska, Karolina
TI  - Distributive differential modals
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 29
EP  - 47
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a1/
LA  - en
ID  - DMGAA_2008_28_1_a1
ER  - 
%0 Journal Article
%A Ślusarska, Karolina
%T Distributive differential modals
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 29-47
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a1/
%G en
%F DMGAA_2008_28_1_a1
Ślusarska, Karolina. Distributive differential modals. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 29-47. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a1/

[1] K.A. Kearnes, Semilattice modes I: the associated semiring, Algebra Universalis 34 (1995), 220-272.

[2] A. Romanowska, On some representations of groupoid modes satisfying the reduction law, Demonstratio Mathematica 21 (1988), 943-960.

[3] A. Romanowska and B. Roszkowska, On some groupoid modes, Demonstratio Mathematica 20 (1987), 277-290.

[4] A. Romanowska and B. Roszkowska, Representations of n-cyclic groupoids, Algebra Universalis 26 (1989), 7-15.

[5] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.

[6] A.B. Romanowska and J.D.H. Smith, Modal Theory - an Algebraic Approach to Order, Geometry and Convexity, Heldermann Verlag, Berlin 1985.

[7] A.B. Romanowska and J.D.H. Smith, Differential groupoids, Contribution to General Algebra 7 (1991), 283-290.