Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2008_28_1_a0, author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}vr\v{c}ek, Filip}, title = {Interior and closure operators on bounded commutative residuated l-monoids}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {11--27}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a0/} }
TY - JOUR AU - Rachůnek, Jiří AU - Švrček, Filip TI - Interior and closure operators on bounded commutative residuated l-monoids JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 11 EP - 27 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a0/ LA - en ID - DMGAA_2008_28_1_a0 ER -
%0 Journal Article %A Rachůnek, Jiří %A Švrček, Filip %T Interior and closure operators on bounded commutative residuated l-monoids %J Discussiones Mathematicae. General Algebra and Applications %D 2008 %P 11-27 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a0/ %G en %F DMGAA_2008_28_1_a0
Rachůnek, Jiří; Švrček, Filip. Interior and closure operators on bounded commutative residuated l-monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 11-27. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a0/
[1] [1] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative residuated lattices, Alg. Univ. 50 (2003), 83-106.
[2] [2] K. Blount and C. Tsinakis, The structure of residuated lattices, Intern. J. Alg. Comp. 13 (2003), 437-461.
[3] [3] R.O.L. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London 2000.
[4] [4]A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London 2000.
[5] [5] A. Dvurečenskij and J. Rachůnek, Bounded commutative residuated l-monoids with general comparability and states, Soft Comput. 10 (2006), 212-218.
[6] [6] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Amsterdam 1998.
[7] [7] P. Jipsen and C. Tsinakis, A survey of residuated lattices, Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht (2002), 19-56.
[8] [8] J. Kühr, Dually Residuated Lattice Ordered Monoids, Ph. D. Thesis, Palacký Univ., Olomouc 2003.
[9] [9] J. Rachůnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (1998), 365-372.
[10] [10] J. Rachůnek, MV-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups, Math. Bohemica 123 (1998), 437-441.
[11] [11] J. Rachůnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569.
[12] [12] J. Rachůnek and V. Slezák, Negation in bounded commutative DRl-monoids, Czechoslovak Math. J. 56 (2006), 755-763.
[13] [13] J. Rachůnek and D. Šalounová, Local bounded commutative residuated l-monoids, Czechoslovak Math. J. 57 (2007), 395-406.
[14] [14] J. Rachůnek and F. Švrček, MV-algebras with additive closure operators, Acta Univ. Palacký, Mathematica 39 (2000), 183-189.
[15] [15] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Panstw. Wyd. Nauk., Warszawa 1963.
[16] [16] K.L.N. Swamy, Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114.
[17] [17] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg-New York 1999.