On coalgebras and type transformations
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 187-197.

Voir la notice de l'article provenant de la source Library of Science

We show that for an arbitrary Set-endofunctor T the generalized membership function given by a sub-cartesian transformation μ from T to the filter functor can be alternatively defined by the collection of subcoalgebras of constant T-coalgebras. Sub-natural transformations ε between any two functors S and T are shown to be sub-cartesian if and only if they respect μ. The class of T-coalgebras whose structure map factors through ε is shown to be a covariety if ε is a natural and sub-cartesian mono-transformation.
Keywords: coalgebra, endofunctor, filter functor, cartesian transformation, crisp
@article{DMGAA_2007_27_2_a2,
     author = {Gumm, H.},
     title = {On coalgebras and type transformations},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {187--197},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a2/}
}
TY  - JOUR
AU  - Gumm, H.
TI  - On coalgebras and type transformations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 187
EP  - 197
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a2/
LA  - en
ID  - DMGAA_2007_27_2_a2
ER  - 
%0 Journal Article
%A Gumm, H.
%T On coalgebras and type transformations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 187-197
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a2/
%G en
%F DMGAA_2007_27_2_a2
Gumm, H. On coalgebras and type transformations. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 187-197. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a2/

[1] P. Aczel and N. Mendler, A final coalgebra theorem, pp. 357-365 in: D.H. Pitt et al., eds, Proceedings Category Theory and Computer Science, Lecture Notes in Computer Science, Springer 1989.

[2] S. Awodey, Category Theory, Oxford University Press (2006).

[3] H.P. Gumm, Birkhoff's variety theorem for coalgebras, Contributions to General Algebra 13 (2000), 159-173.

[4] H.P. Gumm, Functors for coalgebras, Algebra Universalis 45 (2001), 135-147.

[5] H.P. Gumm, From{T-coalgebras to filter structures and transition systems, pp. 194-212 in: D.H. Fiadeiro et al., eds, Algebra and Coalgebra in Computer Science, vol 3629 of Lecture Notes in Computer Science, Springer 2005.

[6] H.P. Gumm and T. Schröder, Coalgebras of bounded type, Math. Struct. in Comp. Science 12 (2001), 565-578.

[7] H.P. Gumm and T. Schröder, Types and coalgebraic structure, Algebra Universalis 53 (2005), 229-252.

[8] E.G. Manes, Implementing collection classes with monads, Math. Struct. in Comp. Science 8 (1998), 231-276.

[9] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (2000), 3-80.

[10] J.D.H. Smith, Permutation representations of left quasigroups, Algebra Universalis 55 (2006), 387-406.