The lattice of varieties of fibered automata
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 87-107.

Voir la notice de l'article provenant de la source Library of Science

The class of all fibered automata is a variety of two-sorted algebras. This paper provides a full description of the lattice of varieties of fibred automata.
Keywords: fibered automata, many-sorted algebras, varieties of many-sorted algebras, lattice of varieties
@article{DMGAA_2007_27_1_a5,
     author = {Mu\'cka, Anna},
     title = {The lattice of varieties of fibered automata},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a5/}
}
TY  - JOUR
AU  - Mućka, Anna
TI  - The lattice of varieties of fibered automata
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 87
EP  - 107
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a5/
LA  - en
ID  - DMGAA_2007_27_1_a5
ER  - 
%0 Journal Article
%A Mućka, Anna
%T The lattice of varieties of fibered automata
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 87-107
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a5/
%G en
%F DMGAA_2007_27_1_a5
Mućka, Anna. The lattice of varieties of fibered automata. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 87-107. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a5/

[1] G. Birkhoff and J.D. Lipson, Heterogenous algebras, J. Comb. Th. 8 (1970), 115-133.

[2] J.A. Goguen and J. Meseguer, Completeness of many-sorted equational logic, Houston J. Math. 11 (1985), 307-334.

[3] H. Lugowski, Grundzüge der Universallen Algebra, Teuber, Leipzig 1976.

[4] I. Rosenberg, A classification of universal algebras by infinitary relations, Algebra Universalis 1 (1972), 350-353.

[5] J.D.H. Smith, Continued fractions, fibered automata, and a theorem of Rosenberg, Multiple-Valued Logic 8 (2002), 503-515.