Completion of partially ordered sets
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 59-67
Cet article a éte moissonné depuis la source Library of Science
The paper considers a generalization of the standard completion of a partially ordered set through the collection of all its lower sets.
Keywords:
quantale module, reflective category, Q-poset
@article{DMGAA_2007_27_1_a3,
author = {Solovyov, Sergey},
title = {Completion of partially ordered sets},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {59--67},
year = {2007},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a3/}
}
Solovyov, Sergey. Completion of partially ordered sets. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 59-67. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a3/
[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley 1990.
[2] G. Gierz, K.H. Hofmann and et al., Continuous Lattices and Domains, Cambridge University Press 2003.
[3] T. Hungerford, Algebra, Springer-Verlag 2003.
[4] S. Lang, Algebra, 3rd ed., Springer-Verlag 2002.
[5] K.I. Rosenthal, The Theory of Quantaloids, Addison Wesley 1996.
[6] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag 2005.