Bipartite pseudo MV-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 183-197.

Voir la notice de l'article provenant de la source Library of Science

A bipartite pseudo MV-algebra A is a pseudo MV-algebra such that A = M ∪ M ̃ for some proper ideal M of A. This class of pseudo MV-algebras, denoted BP, is investigated. The class of pseudo MV-algebras A such that A = M ∪ M ̃ for all maximal ideals M of A, denoted BP₀, is also studied and characterized.
Keywords: pseudo MV-algebra, (maximal) ideal, bipartite pseudo MV-algebra
@article{DMGAA_2006_26_2_a3,
     author = {Dymek, Grzegorz},
     title = {Bipartite pseudo {MV-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {183--197},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a3/}
}
TY  - JOUR
AU  - Dymek, Grzegorz
TI  - Bipartite pseudo MV-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2006
SP  - 183
EP  - 197
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a3/
LA  - en
ID  - DMGAA_2006_26_2_a3
ER  - 
%0 Journal Article
%A Dymek, Grzegorz
%T Bipartite pseudo MV-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2006
%P 183-197
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a3/
%G en
%F DMGAA_2006_26_2_a3
Dymek, Grzegorz. Bipartite pseudo MV-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 183-197. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a3/

[1] R. Ambrosio and A. Lettieri, A classification of bipartite MV-algebras, Math. Japonica 38 (1993), 111-117.

[2] A. Di Nola, A. Dvurečenskij and J. Jakubík, Good and bad infinitesimals, and states on pseudo MV-algebras, Order 21 (2004), 293-314.

[3] A. Di Nola, F. Liguori and S. Sessa, Using maximal ideals in the classification of MV-algebras, Port. Math. 50 (1993), 87-102.

[4] G. Dymek and A. Walendziak, On maximal ideals of GMV-algebras, submitted.

[5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multi. Val. Logic. 6 (2001), 95-135.

[6] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.

[7] J. Rachůnek, Radicals in non-commutative generalizations of MV-algebras, Math. Slovaca 52 (2002), 135-144.

[8] A. Walendziak, On implicative ideals of pseudo MV-algebras, Sci. Math. Jpn. 62 (2005), 281-287;{e-2005, 363-369.