Zero-term rank preservers of integer matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 155-161.

Voir la notice de l'article provenant de la source Library of Science

The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Keywords: linear operator, term-rank, zero-term rank, (P,Q,B)-operator
@article{DMGAA_2006_26_2_a1,
     author = {Song, Seok-Zun and Jun, Young-Bae},
     title = {Zero-term rank preservers of integer matrices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a1/}
}
TY  - JOUR
AU  - Song, Seok-Zun
AU  - Jun, Young-Bae
TI  - Zero-term rank preservers of integer matrices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2006
SP  - 155
EP  - 161
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a1/
LA  - en
ID  - DMGAA_2006_26_2_a1
ER  - 
%0 Journal Article
%A Song, Seok-Zun
%A Jun, Young-Bae
%T Zero-term rank preservers of integer matrices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2006
%P 155-161
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a1/
%G en
%F DMGAA_2006_26_2_a1
Song, Seok-Zun; Jun, Young-Bae. Zero-term rank preservers of integer matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a1/

[1] L.B. Beasley and N.J. Pullman, Term-rank, permanent and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46.

[2] L.B. Beasley, S.Z. Song and S.G. Lee, Zero-term rank preserver, Linear and Multilinear Algebra. 48 (2) (2000), 313-318.

[3] L.B. Beasley, Y.B. Jun and S.Z. Song, Zero-term ranks of real matrices and their preserver, Czechoslovak Math. J. 54 (129) (2004), 183-188.

[4] R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, Vol. 39, Cambridge University Press, Cambridge 1991.

[5] C R. Johnson and J.S. Maybee, Vanishing minor conditions for inverse zero patterns, Linear Algebra Appl. 178 (1993), 1-15.

[6] M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847.

[7] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications, Vol. 6, Addison-Wesley Publishing Company, Reading, Massachusetts 1978.

[8] C.K. Li and N.K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162-164 (1992), 217-235.