Implication algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 141-153.

Voir la notice de l'article provenant de la source Library of Science

We introduce the concepts of pre-implication algebra and implication algebra based on orthosemilattices which generalize the concepts of implication algebra, orthoimplication algebra defined by J.C. Abbott [2] and orthomodular implication algebra introduced by the author with his collaborators. For our algebras we get new axiom systems compatible with that of an implication algebra. This unified approach enables us to compare the mentioned algebras and apply a unified treatment of congruence properties.
Keywords: implication algebra, pre-implication algebra, orthoimplication algebra, orthosemilattice, congruence kernel
@article{DMGAA_2006_26_2_a0,
     author = {Chajda, Ivan},
     title = {Implication algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a0/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Implication algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2006
SP  - 141
EP  - 153
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a0/
LA  - en
ID  - DMGAA_2006_26_2_a0
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Implication algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2006
%P 141-153
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a0/
%G en
%F DMGAA_2006_26_2_a0
Chajda, Ivan. Implication algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 141-153. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a0/

[1] J.C. Abbott, Semi-Boolean algebra, Matem. Vestnik 4 (1967), 177-198.

[2] J.C. Abbott, Orthoimplication Algebras, Studia Logica 35 (1976), 173-177.

[3] L. Beran, Orthomodular Lattices, Algebraic Approach, Mathematic and its Applications, D. Reidel Publ. Comp., 1985.

[4] I. Chajda and R. Halaš, An Implication in Orthologic, submitted to Intern. J. Theor. Phys. 44 (2006), 735-744.

[5] I. Chajda, R. Halaš and H. Länger, Orthomodular implication algebras, Intern. J. Theor. Phys. 40 (2001), 1875-1884.

[6] G.M. Hardegree, Quasi-implication algebras, Part I: Elementary theory, Algebra Universalis 12 (1981), 30-47.

[7] G.M. Hardegree, Quasi-implication algebras, Part II: Sructure theory, Algebra Universalis 12 (1981), 48-65.

[8] J. Hedliková, Relatively orthomodular lattices, Discrete Math., 234 (2001), 17-38.

[9] M.F. Janowitz, A note on generalized orthomodular lattices, J. Natural Sci. Math. 8 (1968), 89-94.

[10] N.D. Megill and M. Pavičić, Quantum implication algebras, Intern. J. Theor. Phys. 48 (2003), 2825-2840.