A semantic construction of two-ary integers
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 165-219

Voir la notice de l'article provenant de la source Library of Science

To binary trees, two-ary integers are what usual integers are to natural numbers, seen as unary trees. We can represent two-ary integers as binary trees too, yet with leaves labelled by binary words and with a structural restriction. In a sense, they are simpler than the binary trees, they relativize. Hence, contrary to the extensions known from Arithmetic and Algebra, this integer extension does not make the starting objects more complex.
Keywords: universal matrix, analytic monoid, LISP, semantics, jump
@article{DMGAA_2005_25_2_a3,
     author = {Ricci, Gabriele},
     title = {A semantic construction of two-ary integers},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {165--219},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a3/}
}
TY  - JOUR
AU  - Ricci, Gabriele
TI  - A semantic construction of two-ary integers
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 165
EP  - 219
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a3/
LA  - en
ID  - DMGAA_2005_25_2_a3
ER  - 
%0 Journal Article
%A Ricci, Gabriele
%T A semantic construction of two-ary integers
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 165-219
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a3/
%G en
%F DMGAA_2005_25_2_a3
Ricci, Gabriele. A semantic construction of two-ary integers. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 165-219. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a3/