Distributivity of bounded lattices with sectionally antitone involutions
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 155-163.

Voir la notice de l'article provenant de la source Library of Science

We present a simple condition under which a bounded lattice L with sectionally antitone involutions becomes an MV-algebra. In thiscase, L is distributive. However, we get a criterion characterizingdistributivity of L in terms of antitone involutions only.
Keywords: sectionally antitone involution, bounded lattice, distributive lattice, MV-algebra
@article{DMGAA_2005_25_2_a2,
     author = {Chajda, Ivan},
     title = {Distributivity of bounded lattices with sectionally antitone involutions},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Distributivity of bounded lattices with sectionally antitone involutions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 155
EP  - 163
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a2/
LA  - en
ID  - DMGAA_2005_25_2_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Distributivity of bounded lattices with sectionally antitone involutions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 155-163
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a2/
%G en
%F DMGAA_2005_25_2_a2
Chajda, Ivan. Distributivity of bounded lattices with sectionally antitone involutions. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 155-163. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a2/

[1] J.C. Abbott, Semi-boolean algebra, Matem. Vestnik 4 (1967), 177-198.

[2] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, Dordrecht/Boston/London 2000.

[3] I. Chajda, Lattices and semilattices having an antitone involution inevery upper interval, Comment. Math. Univ. Carol (CMUC) 44 (4) (2003), 577-585.

[4] I. Chajda and P. Emanovský, Bounded lattices with antitone involutions and properties of MV-algebras, Discuss. Math. General Algebra and Appl. 24 (2004), 31-42.

[5] I. Chajda, R. Halas and J. Kühr, Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged), to appear.