Representations of a free group of rank two by time-varying Mealy automata
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 119-134.

Voir la notice de l'article provenant de la source Library of Science

In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-calledtime-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.
Keywords: changing alphabet, Mealy automaton, time-varying automaton, group generated by time-varying automaton, free group
@article{DMGAA_2005_25_1_a5,
     author = {Woryna, Adam},
     title = {Representations of a free group of rank two by time-varying {Mealy} automata},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a5/}
}
TY  - JOUR
AU  - Woryna, Adam
TI  - Representations of a free group of rank two by time-varying Mealy automata
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 119
EP  - 134
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a5/
LA  - en
ID  - DMGAA_2005_25_1_a5
ER  - 
%0 Journal Article
%A Woryna, Adam
%T Representations of a free group of rank two by time-varying Mealy automata
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 119-134
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a5/
%G en
%F DMGAA_2005_25_1_a5
Woryna, Adam. Representations of a free group of rank two by time-varying Mealy automata. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 119-134. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a5/

[1] S.V. Aleshin, A free group of finite automata, (Russian), Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 38 (1983), 12-14 (English Transl.: Moscow Univ. Math. Bull. 38 (1983), No. 4, 10-13).

[2] L. Bartholdi, R.I. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, 'Fractals in Graz 2001', Birkhäuser, Basel 2003, 25-118.

[3] R.I. Grigorchuk, V. V. Nekrashevich and V.I. Sushchanskii, Automata, Dynamical Systems and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203.

[4] R.I. Grigorchuk and A. Żuk, Lectures on Automata Groups, Dynamics on Tress, and L2-invariants, 'Advanced Course on Automata Groups' (July 5-16, 2004 at CRM), Centre de Recerca Matemàtica, Universitat Autonòma de Barcelona, Bellaterra, Spain, (preprint, 2004).

[5] A. Olijnyk, Free products of C2 as groups of finitely automatic permutations, (in Russian), Voprosy Algebry 14 (1999), 158-165.

[6] A.S. Olijnyk and V.I. Sushchanskii, Free Groups of Infinitely Unitriangular Matrices, Math. Notes 67 (2000), 320-324.

[7] V.I. Sushchanskii, Group of Automatic Permutations, (Ukrainian), Dopov. Nats. Akad. Ukr. Mat. Prirodozn. Tekh. Nauki 1998, no. 6, 47-51.

[8] V.I. Sushchanskii, Group of Finite Automatic Permutations, (Ukrainian), Dopov. Nats. Akad. Ukr. Mat. Prirodozn. Tekh. Nauki 1999, no. 2, 48-52.

[9] A. Woryna, On transformations given by time-varying Mealy automata, (Polish), Zeszyty Nauk. Politech. Śląskiej, no. 1581, Ser. Automatyka 138 (2003), 201-215.

[10] A. Woryna, On the group permutations generated by time-varying Mealy automata, Publ. Math. Debrecen, 67 (2005), 115-130.

[11] A. Woryna, On representation of a semidirect product of cyclic groups by a 2-state time-varying Mealy automaton, Zeszyty Nauk. Politech. Śląskiej, no. 1652, Ser. Math. 91 (2004), 343-355.