Semigroups defined by automaton extension mapping
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 103-118.

Voir la notice de l'article provenant de la source Library of Science

We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.
Keywords: automaton mapping, Mealy automaton, semigroup
@article{DMGAA_2005_25_1_a4,
     author = {Osys, Miros{\l}aw},
     title = {Semigroups defined by automaton extension mapping},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/}
}
TY  - JOUR
AU  - Osys, Mirosław
TI  - Semigroups defined by automaton extension mapping
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 103
EP  - 118
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/
LA  - en
ID  - DMGAA_2005_25_1_a4
ER  - 
%0 Journal Article
%A Osys, Mirosław
%T Semigroups defined by automaton extension mapping
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 103-118
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/
%G en
%F DMGAA_2005_25_1_a4
Osys, Mirosław. Semigroups defined by automaton extension mapping. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/

[1] K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat. 10 (1965), 459-468.

[2] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York 1974.

[3] V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk 16 no. 5 (101), (1961), 3-62.

[4] R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203.

[5] B. Mikolajczak et al. (eds.), Algebraic and Structural Automata Theory, Annals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam 1991.

[6] M. Osys, Automaton extensions of mappings on the set of words defined by finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005).

[7] M. Osys, Automaton extensions of transformations of free monoid over finite alphabet (Polish), Zeszyty Nauk. Politech. Śląskiej, Seria Math.-Fiz., no. 91, (2004).

[8] G.N. Raney, Sequential functions, J. Assoc. Comput. Math. 5 (1958), 177-180.

[9] Y. Sheng, Regular languages, Handbook of Formal Languages, vol. 1, Springer-Verlag, Berlin 1997, 41-110.