Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2005_25_1_a4, author = {Osys, Miros{\l}aw}, title = {Semigroups defined by automaton extension mapping}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {103--118}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/} }
Osys, Mirosław. Semigroups defined by automaton extension mapping. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a4/
[1] K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat. 10 (1965), 459-468.
[2] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York 1974.
[3] V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk 16 no. 5 (101), (1961), 3-62.
[4] R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203.
[5] B. Mikolajczak et al. (eds.), Algebraic and Structural Automata Theory, Annals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam 1991.
[6] M. Osys, Automaton extensions of mappings on the set of words defined by finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005).
[7] M. Osys, Automaton extensions of transformations of free monoid over finite alphabet (Polish), Zeszyty Nauk. Politech. Śląskiej, Seria Math.-Fiz., no. 91, (2004).
[8] G.N. Raney, Sequential functions, J. Assoc. Comput. Math. 5 (1958), 177-180.
[9] Y. Sheng, Regular languages, Handbook of Formal Languages, vol. 1, Springer-Verlag, Berlin 1997, 41-110.