Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2005_25_1_a2, author = {Vogel, Hans-J\"urgen}, title = {Categories of functors between categories with partial morphisms}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {39--87}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a2/} }
TY - JOUR AU - Vogel, Hans-Jürgen TI - Categories of functors between categories with partial morphisms JO - Discussiones Mathematicae. General Algebra and Applications PY - 2005 SP - 39 EP - 87 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a2/ LA - en ID - DMGAA_2005_25_1_a2 ER -
Vogel, Hans-Jürgen. Categories of functors between categories with partial morphisms. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 39-87. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a2/
[1] A. Asperti and G. Longo, Categories of partial morphisms and the relation between type structures, Banach Semester 1985, Nota Scientifica, 7-85, University of Pisa, 1986.
[2] P.-L. Curien and A. Obtuowicz, Partiality, cartesian closedness, and toposes, Inform. and Comput. 80 (1989), 50-95.
[3] R.A. Di Paola and A. Heller, Dominical categories: recursion theory without elements, J. Symbolic Logic 52 (1997), 594-635.
[4] S. Eilenberg and G.M. Kelly, Closed categories, 'Procedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562.
[5] A. Heller, Dominical categories, 'Atti della Scuola di Logica di Siena', University di Siena 1982, 373-412.
[6] A. Heller, Dominical categories and recursion theory, 'Procedings of the Conference on Mathematical Logic', Vol 2, University of Siena, Siena 1985, 339-344.
[7] H.-J. Hoehnke, Allgemeine Algebra der Automaten, 'Automaten und Funktoren', by L. Budach and H.-J. Hoehnke, Akademie-Verlag, Berlin 1975.
[8] H.-J. Hoehnke, On partial algebras, Colloq. Math. Soc. J. Bolyai, Vol. 29 ('Universal Algebra; Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1982, 373-412.
[9] H.-J. Hoehnke, On Yoneda-Schreckenberger's embedding of the class of monoidal categories, 'Proceedings of the Conference on Theory and Applications of Semigroups (Greifswald 1984)', Math. Gesellsch.d. DDR, Berlin 1985, 19-43.
[10] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. I, ' Universal and Applied Algebra, (Turawa 1988)', World Sci. Publishing, Singapore 1989, 149-176.
[11] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. II, Preprint P-MATH-3/89, Akad. d. Wiss. d. DDR, Karl-Weierstrass-Inst. f. Math., Berlin 1989.
[12] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. IV, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 137-167.
[13] G. Longo and E. Moggi, Cartesian closed categories of enumerations foreffective type structures, Lectrure Notes in Comp. Sci. 173, ('Semantics of Data Types'), Springer-Verlag, Berlin 1984, 235-255.
[14] A. Obtuowicz, The logic of categories of partial functions and its applications, Dissertationes Math. (Rozprawy Math.) 241 (1986), 1-164.
[15] E.P. Robinson and G. Rosolini, Categories of partial maps, Inform. and Comput. 79 (1988), 95-130.
[16] G. Rosolini, Domains and dominical categories, Riv. Math. Univ. Parma (4) 11 (1985), 387-397.
[17] G. Rosolini, Continuity and Effectiveness in Topoi, Ph.D. Thesis, University of Oxford, 1986.
[18] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980.
[19] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.
[20] J. Schreckenberger, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. 24 (1987), 83-98.
[21] J. Schreckenberger, Mehrfache Partialisierung von Kategorien, Beiträge Algebra Geom. 25 (1987), 109-122.
[22] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984.
[23] H.-J. Vogel, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-216.
[24] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.- Algebra and Stochastic Methods 18 (1998), 131-147.
[25] H.-J. Vogel, On the structure of halfdiagonal-halfterminal symmetric categories with diagonal inversions, Discuss. Math.- Gen. Algebra and Appl. 21 (2001), 139-163.
[26] H.-J. Vogel, Algebraic theories for Birkhoff-algebras, to appear.