Hyperidentities in transitive graph algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 23-37.

Voir la notice de l'article provenant de la source Library of Science

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t. A graph G = (V,E) is called a transitive graph if the corresponding graph algebra A(G) satisfies the equation x(yz) ≈ (xz)(yz). An identity s ≈ t of terms s and t of any type t is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s and t are replaced by any term operations of A of the appropriate arity, the resulting identities hold in A̲ .
Keywords: identity, hyperidentity, term, normal form term, binary algebra, graph algebra, transitive graph algebra
@article{DMGAA_2005_25_1_a1,
     author = {Poomsa-ard, Tiang and Wetweerapong, Jeerayut and Samartkoon, Charuchai},
     title = {Hyperidentities in transitive graph algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a1/}
}
TY  - JOUR
AU  - Poomsa-ard, Tiang
AU  - Wetweerapong, Jeerayut
AU  - Samartkoon, Charuchai
TI  - Hyperidentities in transitive graph algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 23
EP  - 37
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a1/
LA  - en
ID  - DMGAA_2005_25_1_a1
ER  - 
%0 Journal Article
%A Poomsa-ard, Tiang
%A Wetweerapong, Jeerayut
%A Samartkoon, Charuchai
%T Hyperidentities in transitive graph algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 23-37
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a1/
%G en
%F DMGAA_2005_25_1_a1
Poomsa-ard, Tiang; Wetweerapong, Jeerayut; Samartkoon, Charuchai. Hyperidentities in transitive graph algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a1/

[1] K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, 'Contributions to General Algebra and Applications in Discrete Mathematics', Shaker-Verlag, Aachen 1997, 59-68.

[2] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, 'Contributions to General Algebra', vol. 9, Verlag Hölder-Pichler-Tempsky, Vienna 1995, 117-125.

[3] E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990), 57-75.

[4] J. Płonka, Hyperidentities in some of vareties, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 195-213.

[5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Olomouc 1994', Palacký University, Olomouc 1994, 106-115.

[6] T. Poomsa-ard, Hyperidentities in associative graph algebras, Discuss. Math. - Gen. Algebra Appl. 20 (2000), 169-182.

[7] R. Pöschel, The equational logic for graph algebras, Z. Math. Logik Grundl. Math. 35 (1989), 273-282.

[8] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577.

[9] C.R. Shallon, Nonfinitely Based Finite Algebras Derived from Lattices, Ph.D. Thesis, University of California, Los Angeles, CA, 1979.