On varieties of left distributive left idempotent groupoids
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 267-275.

Voir la notice de l'article provenant de la source Library of Science

We describe a part of the lattice of subvarieties of left distributive left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈ (xy)(xz) and (xx)y ≈ xy) modulo the lattice of subvarieties of left distributive idempotent groupoids. A free groupoid in a subvariety of LDLI groupoids satisfying an identity xⁿ ≈ x decomposes as the direct product of its largest idempotent factor and a cycle. Some properties of subdirectly ireducible LDLI groupoids are found.
Keywords: left distributivity, left idempotence, right zero band, LDLI groupoids, subdirectly irreducible, free groupoid, lattice of subvarieties
@article{DMGAA_2004_24_2_a7,
     author = {Stanovsk\'y, David},
     title = {On varieties of left distributive left idempotent groupoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a7/}
}
TY  - JOUR
AU  - Stanovský, David
TI  - On varieties of left distributive left idempotent groupoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 267
EP  - 275
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a7/
LA  - en
ID  - DMGAA_2004_24_2_a7
ER  - 
%0 Journal Article
%A Stanovský, David
%T On varieties of left distributive left idempotent groupoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 267-275
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a7/
%G en
%F DMGAA_2004_24_2_a7
Stanovský, David. On varieties of left distributive left idempotent groupoids. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 267-275. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a7/

[1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.

[2] S. Burris and H.P. Sankappanavar, A course in universal algebra, Springer, New York 1981 (and also the (electronic) Millennium Edition 1999).

[3] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406.

[4] P. Jedlicka, On left distributive left idempotent groupoids, Comment. Math. Univ. Carolinae, to appear.

[5] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186.

[6] J. Płonka, On k-cyclic groupoids, Math. Japon. 30 (1985), 371-382.

[7] B. Roszkowska, The lattice of varieties of symmetric idempotent entropic groupoids, Demonstratio Math. 20 (1987), 259-275.

[8] H. Ryder, The congruence structure of racks, Comm. Algebra 23 (1995), 4971-4989.

[9] D. Stanovský, Left distributive left quasigroups, PhD Thesis, Charles University in Prague, 2004, Available at http://www.karlin.mff.cuni.cz/~stanovsk/math/disert.pdf.