Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2004_24_2_a6, author = {Cawagas, Raoul}, title = {On the structure and zero divisors of the {Cayley-Dickson} sedenion algebra}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {251--265}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a6/} }
TY - JOUR AU - Cawagas, Raoul TI - On the structure and zero divisors of the Cayley-Dickson sedenion algebra JO - Discussiones Mathematicae. General Algebra and Applications PY - 2004 SP - 251 EP - 265 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a6/ LA - en ID - DMGAA_2004_24_2_a6 ER -
%0 Journal Article %A Cawagas, Raoul %T On the structure and zero divisors of the Cayley-Dickson sedenion algebra %J Discussiones Mathematicae. General Algebra and Applications %D 2004 %P 251-265 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a6/ %G en %F DMGAA_2004_24_2_a6
Cawagas, Raoul. On the structure and zero divisors of the Cayley-Dickson sedenion algebra. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 251-265. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a6/
[1] J. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2) (2001), 145-205.
[2] R.E. Cawagas, FINITAS - A software for the construction and analysis of finite algebraic structures, PUP Jour. Res. Expo., 1 No. 1, 1st Semester 1997.
[3] R.E. Cawagas, Loops embedded in generalized Cayley algebras of dimension 2 r, r ł 2, Int. J. Math. Math. Sci. 28 (2001). doi: 181-187
[4] J.H. Conway and D.A. Smith, On Quaternions and Octonions: Their Geometry and Symmetry, A.K. Peters Ltd., Natik, MA, 2003.
[5] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Appl. Math. Comput. 115 (2000), 77-88.
[6] R.P.C. de Marrais, The 42 assessors and the box-kites they fly: diagonal axis-pair systems of zero-divisors in the sedenions'16 dimensions, http://arXiv.org/abs/math.GM/0011260 (preprint 2000).
[7] G. Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mexicana (3) 4 (1998), 13-28.
[8] S. Okubo, Introduction to Octonions and Other Non-Associative Algebras in Physics, Cambridge University Press, Cambridge 1995.
[9] J.D. Phillips and P. Vojtechovsky, The varieties of loops of the Bol-Moufang type, submitted to Algebra Universalis.
[10] R.D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York 1966.
[11] J.D.H. Smith, A left loop on the 15-sphere, J. Algebra 176 (1995), 128-138.
[12] J.D.H, Smith, New developments with octonions and sedenions, Iowa State University Combinatorics/Algebra Seminar. (January 26, 2004), http://www.math.iastate.edu/jdhsmith/math/JS26jan4.htm.
[13] T. Smith, Why not SEDENIONS?, http://www.innerx.net/personal/tsmith/sedenion.html.
[14] J.P. Ward, Quaternions and Cayley Numbers, Kluwer Academic Publishers, Dordrecht 1997.