A groupoid characterization of Boolean algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 177-184.

Voir la notice de l'article provenant de la source Library of Science

We present a groupoid which can be converted into a Boolean algebra with respect to term operations. Also conversely, every Boolean algebra can be reached in this way.
Keywords: groupoid, Boolean algebra, semi-bolean algebra, involution, dualautomorphism (or antiautomorphism)
@article{DMGAA_2004_24_2_a1,
     author = {Chajda, Ivan},
     title = {A groupoid characterization of {Boolean} algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {177--184},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - A groupoid characterization of Boolean algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 177
EP  - 184
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/
LA  - en
ID  - DMGAA_2004_24_2_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T A groupoid characterization of Boolean algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 177-184
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/
%G en
%F DMGAA_2004_24_2_a1
Chajda, Ivan. A groupoid characterization of Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 177-184. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/

[1] J.C. Abbott, Semi-boolean algebra, Mat. Vestnik 4 (1967), 177-198.

[2] G. Birkhoff, Lattice Theory, third edition, Publ. Amer. Math. Soc., Providence, RI, 1967.

[3] J. Dudek, Polynomials in idempotent commutative groupoids, Dissert. Math. 286 (1989), 1-59.