A groupoid characterization of Boolean algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 177-184
Cet article a éte moissonné depuis la source Library of Science
We present a groupoid which can be converted into a Boolean algebra with respect to term operations. Also conversely, every Boolean algebra can be reached in this way.
Keywords:
groupoid, Boolean algebra, semi-bolean algebra, involution, dualautomorphism (or antiautomorphism)
@article{DMGAA_2004_24_2_a1,
author = {Chajda, Ivan},
title = {A groupoid characterization of {Boolean} algebras},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {177--184},
year = {2004},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/}
}
Chajda, Ivan. A groupoid characterization of Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 177-184. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a1/
[1] J.C. Abbott, Semi-boolean algebra, Mat. Vestnik 4 (1967), 177-198.
[2] G. Birkhoff, Lattice Theory, third edition, Publ. Amer. Math. Soc., Providence, RI, 1967.
[3] J. Dudek, Polynomials in idempotent commutative groupoids, Dissert. Math. 286 (1989), 1-59.