Commutation of operations and its relationship with Menger and Mann superpositions
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 153-176.

Voir la notice de l'article provenant de la source Library of Science

The article considers a problem from Trokhimenko paper [13] concerning the study of abstract properties of commutations of operations and their connection with the Menger and Mann superpositions. Namely, abstract characterizations of some classes of operation algebras, whose signature consists of arbitrary families of commutations of operations, Menger and Mann superpositions and their various connections are found. Some unsolved problems are given at the end of the article.
Keywords: Menger superposition, Superassociativity, (unitary) Menger algebra, selektor, n-ary groupoid, (extented) Menger multisemigroup (of operations), commutation of an operation, unar (of commutations), Mann superposition, abstract characterization of Menger algebras
@article{DMGAA_2004_24_2_a0,
     author = {Sokhatsky, Fedir},
     title = {Commutation of operations and its relationship with {Menger} and {Mann} superpositions},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {153--176},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/}
}
TY  - JOUR
AU  - Sokhatsky, Fedir
TI  - Commutation of operations and its relationship with Menger and Mann superpositions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 153
EP  - 176
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/
LA  - en
ID  - DMGAA_2004_24_2_a0
ER  - 
%0 Journal Article
%A Sokhatsky, Fedir
%T Commutation of operations and its relationship with Menger and Mann superpositions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 153-176
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/
%G en
%F DMGAA_2004_24_2_a0
Sokhatsky, Fedir. Commutation of operations and its relationship with Menger and Mann superpositions. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 153-176. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/

[1] V.D. Belousov, Conjugate operations (Russian), 'Studies in General Algebra' (Russian), Akad. Nauk Moldav. SSR Kishinev (Chishinau) 1965, 37-52.

[2] V.D. Belousov, Balanced identities in quasigroups, (Russian) Mat. Sb. (N.S.) 70 (112) (1966), 55-97.

[3] V.D. Belousov, Systems of orthogonal operations (Russian), Mat. Sb. (N.S.) 77 (119) (1968), 38-58.

[4] K. Denecke and P. Jampachon, N-solid varietes of free Menger algebras of rank n, Eastwest J. Math. 5 (2003), 81-88.

[5] W.A. Dudek and V.S. Trokhimenko, Functional Menger P-algebras, Comm. Algebra 30 (2003), 5921-5931.

[6] K. Głazek, Morphisms of general algebras without fixed fundamental operations, 'General Algebra and Applications', Heldermann-Verlag, Berlin 1993, 89-112.

[7] K. Głazek, Algebras of Algebraic Operations and Morphisms of Algebraic System (Polish), Wydawnictwo Uniwersytetu Wroc awskiego, Wrocaw 1994 (146 pp.).

[8] A. Knoebel, Cayley-like representations are for all algebras, not morely groups, Algebra Universalis 46 (2001), 487-497.

[9] H. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc. 50 (1944), 249-257.

[10] K. Menger, The algebra of functions: past, present and future, Rend. Mat. Appl. 20 (1961), 409-430.

[11] M.B. Schein and V.S. Trohimenko, Algebras of multiplace functions, Smigroup Forum 17 (1979), 1-64.

[12] F.N. Sokhatsky, An abstract characterization (2,n)-semigroups of n-ary operations (Russian), Mat. Issled. no. 65 (1982), 132-139.

[13] V.S. Trokhimenko, On algebras of binary operations (Russian), Mat. Issled. no. 24 (1972), 253-261.

[14] T. Yakubov, About (2,n)-semigroups of n-ary operations (Russian), Izvest. Akad. Nauk Moldav. SSR (Bul. Akad. Stiince RSS Moldaven) 1974, no. 1, 29-46.

[15] K.A. Zaretski, An abstract characterization of the bisemigroup of binaryoperations (Russian), Mat. Zametki 1 (1965), 525-530.