Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2004_24_2_a0, author = {Sokhatsky, Fedir}, title = {Commutation of operations and its relationship with {Menger} and {Mann} superpositions}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {153--176}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/} }
TY - JOUR AU - Sokhatsky, Fedir TI - Commutation of operations and its relationship with Menger and Mann superpositions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2004 SP - 153 EP - 176 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/ LA - en ID - DMGAA_2004_24_2_a0 ER -
%0 Journal Article %A Sokhatsky, Fedir %T Commutation of operations and its relationship with Menger and Mann superpositions %J Discussiones Mathematicae. General Algebra and Applications %D 2004 %P 153-176 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/ %G en %F DMGAA_2004_24_2_a0
Sokhatsky, Fedir. Commutation of operations and its relationship with Menger and Mann superpositions. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 153-176. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a0/
[1] V.D. Belousov, Conjugate operations (Russian), 'Studies in General Algebra' (Russian), Akad. Nauk Moldav. SSR Kishinev (Chishinau) 1965, 37-52.
[2] V.D. Belousov, Balanced identities in quasigroups, (Russian) Mat. Sb. (N.S.) 70 (112) (1966), 55-97.
[3] V.D. Belousov, Systems of orthogonal operations (Russian), Mat. Sb. (N.S.) 77 (119) (1968), 38-58.
[4] K. Denecke and P. Jampachon, N-solid varietes of free Menger algebras of rank n, Eastwest J. Math. 5 (2003), 81-88.
[5] W.A. Dudek and V.S. Trokhimenko, Functional Menger P-algebras, Comm. Algebra 30 (2003), 5921-5931.
[6] K. Głazek, Morphisms of general algebras without fixed fundamental operations, 'General Algebra and Applications', Heldermann-Verlag, Berlin 1993, 89-112.
[7] K. Głazek, Algebras of Algebraic Operations and Morphisms of Algebraic System (Polish), Wydawnictwo Uniwersytetu Wroc awskiego, Wrocaw 1994 (146 pp.).
[8] A. Knoebel, Cayley-like representations are for all algebras, not morely groups, Algebra Universalis 46 (2001), 487-497.
[9] H. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc. 50 (1944), 249-257.
[10] K. Menger, The algebra of functions: past, present and future, Rend. Mat. Appl. 20 (1961), 409-430.
[11] M.B. Schein and V.S. Trohimenko, Algebras of multiplace functions, Smigroup Forum 17 (1979), 1-64.
[12] F.N. Sokhatsky, An abstract characterization (2,n)-semigroups of n-ary operations (Russian), Mat. Issled. no. 65 (1982), 132-139.
[13] V.S. Trokhimenko, On algebras of binary operations (Russian), Mat. Issled. no. 24 (1972), 253-261.
[14] T. Yakubov, About (2,n)-semigroups of n-ary operations (Russian), Izvest. Akad. Nauk Moldav. SSR (Bul. Akad. Stiince RSS Moldaven) 1974, no. 1, 29-46.
[15] K.A. Zaretski, An abstract characterization of the bisemigroup of binaryoperations (Russian), Mat. Zametki 1 (1965), 525-530.