Clifford semifields
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 125-135.

Voir la notice de l'article provenant de la source Library of Science

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.
Keywords: skew-ring, Clifford semiring, Clifford semidomain, Clifford semifield, Artinian Clifford semiring
@article{DMGAA_2004_24_1_a8,
     author = {Sen, Mridul and Maity, Sunil and Shum, Kar-Ping},
     title = {Clifford semifields},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a8/}
}
TY  - JOUR
AU  - Sen, Mridul
AU  - Maity, Sunil
AU  - Shum, Kar-Ping
TI  - Clifford semifields
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 125
EP  - 135
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a8/
LA  - en
ID  - DMGAA_2004_24_1_a8
ER  - 
%0 Journal Article
%A Sen, Mridul
%A Maity, Sunil
%A Shum, Kar-Ping
%T Clifford semifields
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 125-135
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a8/
%G en
%F DMGAA_2004_24_1_a8
Sen, Mridul; Maity, Sunil; Shum, Kar-Ping. Clifford semifields. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a8/

[1] D.M. Burton, A First Course in Rings and Ideals, Addison-Wesley Publishing Company, Reading, MA, 1970.

[2] M.P. Grillet, Semirings with a completely simple additive semigroup, J. Austral. Math. Soc. (Series A) 20 (1975), 257-267.

[3] P.H. Karvellas, Inverse semirings, J. Austral. Math. Soc. 18 (1974), 277-288.

[4] M.K. Sen, S.K. Maity and K.-P. Shum, Semisimple Clifford semirings, 'Advances in Algebra', World Scientific, Singapore, 2003, 221-231.

[5] M.K. Sen, S.K. Maity and K.-P. Shum, Clifford semirings and generalized Clifford semirings, Taiwanese J. Math., to appear.

[6] M.K. Sen, S.K. Maity and K.-P. Shum, On Completely Regular Semirings, Taiwanese J. Math., submitted.

[7] J. Zeleznekow, Regular semirings, Semigroup Forum, 23 (1981), 119-136.