On interval decomposition lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 95-114

Voir la notice de l'article provenant de la source Library of Science

Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.
Keywords: interval, closure system, modular decomposition, semimodular lattice, partition lattice, strong set, lexicographic sum
@article{DMGAA_2004_24_1_a6,
     author = {Foldes, Stephan and Radeleczki, S\'andor},
     title = {On interval decomposition lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {95--114},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a6/}
}
TY  - JOUR
AU  - Foldes, Stephan
AU  - Radeleczki, Sándor
TI  - On interval decomposition lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 95
EP  - 114
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a6/
LA  - en
ID  - DMGAA_2004_24_1_a6
ER  - 
%0 Journal Article
%A Foldes, Stephan
%A Radeleczki, Sándor
%T On interval decomposition lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 95-114
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a6/
%G en
%F DMGAA_2004_24_1_a6
Foldes, Stephan; Radeleczki, Sándor. On interval decomposition lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 95-114. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a6/