Distributive lattices with a given skeleton
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 75-94.

Voir la notice de l'article provenant de la source Library of Science

We present a construction of finite distributive lattices with a given skeleton. In the case of an H-irreducible skeleton K the construction provides all finite distributive lattices based on K, in particular the minimal one.
Keywords: distributive lattice, skeleton, gluing, tolerance relation, skeleton torelance, K-atlas, H-irreducibility
@article{DMGAA_2004_24_1_a5,
     author = {Grygiel, Joanna},
     title = {Distributive lattices with a given skeleton},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {75--94},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a5/}
}
TY  - JOUR
AU  - Grygiel, Joanna
TI  - Distributive lattices with a given skeleton
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 75
EP  - 94
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a5/
LA  - en
ID  - DMGAA_2004_24_1_a5
ER  - 
%0 Journal Article
%A Grygiel, Joanna
%T Distributive lattices with a given skeleton
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 75-94
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a5/
%G en
%F DMGAA_2004_24_1_a5
Grygiel, Joanna. Distributive lattices with a given skeleton. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a5/

[1] H.J. Bandelt, Tolerance relations of lattices, Bull. Austral. Math. Soc. 23 (1981), 367-381.

[2] G. Bartenschlager, Free bounded distributive lattices generated by finite ordered sets, Ph.D. Thesis, TH Darmstadt 1994.

[3] J. Chajda and B. Zelinka, Lattices of tolerances, Casopis Pest. Mat. 102 (1977), 10-24.

[4] G. Czedli, Factor lattices by tolerances, Acta Sci. Math. (Szeged) 44 (1982), 35-42.

[5] A. Day and Ch. Herrmann, Gluings of modular lattices, Order 5 (1988), 85-101.

[6] B. Ganter and R. Wille, Formal concept analysis. Mathematical Foundations, Springer-Verlag, Berlin 1999.

[7] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Berlin, 1978.

[8] J. Grygiel, On gluing of lattices, Bull. Sect. Logic 32 no. 1/2 (2003), 27-32.

[9] M. Hall and R.P. Dilworth, The embedding problem for modular lattices, Ann. of Math. 45 (1944), 450-456.

[10] Ch. Herrmann, S-verklebte Summen von Verbänden, Math. Z. 130 (1973), 255-274.

[11] Ch. Herrmann, Alan Day's work on modular and Arguesian lattices, Algebra Universalis 34 (1995), 35-60.

[12] R. Wille, The skeletons of free distributive lattices, Discrete Math. 88 (1991), 309-320.