Direct decompositions of dually residuated lattice-ordered monoids
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Library of Science

The class of dually residuated lattice ordered monoids (DRl-monoids) contains, in an appropriate signature, all l-groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of DRl-monoids in general and we characterize ideals of DRl-monoids which are direct factors. The results are then applicable to all above mentioned special classes of DRl-monoids.
Keywords: DRl-monoid, lattice-ordered monoid, ideal, normal ideal, polar, direct factor
@article{DMGAA_2004_24_1_a4,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana},
     title = {Direct decompositions of dually residuated lattice-ordered monoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
AU  - Šalounová, Dana
TI  - Direct decompositions of dually residuated lattice-ordered monoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 63
EP  - 74
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/
LA  - en
ID  - DMGAA_2004_24_1_a4
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%A Šalounová, Dana
%T Direct decompositions of dually residuated lattice-ordered monoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 63-74
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/
%G en
%F DMGAA_2004_24_1_a4
Rachůnek, Jiří; Šalounová, Dana. Direct decompositions of dually residuated lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/

[1] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000.

[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic 8 (2002), 673-714.

[3] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht 1998.

[4] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.

[5] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.

[6] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohemica 128 (2003), 199-208.

[7] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246.

[8] J. Kühr, Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. (to appear).

[9] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.

[10] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.

[11] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122.

[12] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.

[13] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl-semigroups, Math. Bohemica 123 (1998), 437-441.

[14] J. Rachnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569.

[15] J. Rachnek, Polars and annihilators in representable DRl- monoids and MV-algebras, Math. Slovaca 51 (2001), 1-12.

[16] J. Rachnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.

[17] J. Rachnek, Prime ideals and polars in generalized MV- algebras, Multiple-Valued Logic 8 (2002), 127-137.

[18] J. Rachnek, Prime spectra of non-commutative generalizations of MV-algebras, Algebra Univers. 48 (2002), 151-169.

[19] D. Salounová, Lex-ideals of DRl-monoids and GMV-algebras, Math. Slovaca 53 (2003), 321-330.

[20] K.L.N. Swamy, Dually residuated lattice-ordered semigroups I, Math. Ann. 159 (1965), 105-114.

[21] K.L.N. Swamy, Dually residuated lattice-ordered semigroups II, Math. Ann. 160 (1965), 64-71.

[22] K.L.N. Swamy, Dually residuated lattice-ordered semigroups III, Math. Ann. 167 (1966), 71-74.

[23] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374.

[24] K.L.N. Swamy, and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980). doi: 369-379