Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2004_24_1_a4, author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana}, title = {Direct decompositions of dually residuated lattice-ordered monoids}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {63--74}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/} }
TY - JOUR AU - Rachůnek, Jiří AU - Šalounová, Dana TI - Direct decompositions of dually residuated lattice-ordered monoids JO - Discussiones Mathematicae. General Algebra and Applications PY - 2004 SP - 63 EP - 74 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/ LA - en ID - DMGAA_2004_24_1_a4 ER -
%0 Journal Article %A Rachůnek, Jiří %A Šalounová, Dana %T Direct decompositions of dually residuated lattice-ordered monoids %J Discussiones Mathematicae. General Algebra and Applications %D 2004 %P 63-74 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/ %G en %F DMGAA_2004_24_1_a4
Rachůnek, Jiří; Šalounová, Dana. Direct decompositions of dually residuated lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a4/
[1] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000.
[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic 8 (2002), 673-714.
[3] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht 1998.
[4] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.
[5] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.
[6] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohemica 128 (2003), 199-208.
[7] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246.
[8] J. Kühr, Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. (to appear).
[9] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.
[10] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.
[11] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122.
[12] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.
[13] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl-semigroups, Math. Bohemica 123 (1998), 437-441.
[14] J. Rachnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569.
[15] J. Rachnek, Polars and annihilators in representable DRl- monoids and MV-algebras, Math. Slovaca 51 (2001), 1-12.
[16] J. Rachnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.
[17] J. Rachnek, Prime ideals and polars in generalized MV- algebras, Multiple-Valued Logic 8 (2002), 127-137.
[18] J. Rachnek, Prime spectra of non-commutative generalizations of MV-algebras, Algebra Univers. 48 (2002), 151-169.
[19] D. Salounová, Lex-ideals of DRl-monoids and GMV-algebras, Math. Slovaca 53 (2003), 321-330.
[20] K.L.N. Swamy, Dually residuated lattice-ordered semigroups I, Math. Ann. 159 (1965), 105-114.
[21] K.L.N. Swamy, Dually residuated lattice-ordered semigroups II, Math. Ann. 160 (1965), 64-71.
[22] K.L.N. Swamy, Dually residuated lattice-ordered semigroups III, Math. Ann. 167 (1966), 71-74.
[23] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374.
[24] K.L.N. Swamy, and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980). doi: 369-379