Power indices of trace zero symmetric Boolean matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Library of Science

The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.
Keywords: power index, index of convergence, period, Boolean matrix
@article{DMGAA_2004_24_1_a3,
     author = {Zhou, Bo},
     title = {Power indices of trace zero symmetric {Boolean} matrices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/}
}
TY  - JOUR
AU  - Zhou, Bo
TI  - Power indices of trace zero symmetric Boolean matrices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 53
EP  - 61
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/
LA  - en
ID  - DMGAA_2004_24_1_a3
ER  - 
%0 Journal Article
%A Zhou, Bo
%T Power indices of trace zero symmetric Boolean matrices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 53-61
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/
%G en
%F DMGAA_2004_24_1_a3
Zhou, Bo. Power indices of trace zero symmetric Boolean matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/

[1] M. Gavalec, Computing matrix period in max-min algebra, Discrete Appl. Math. 75 (1997), 63-70.

[2] D.A. Gregory, N.J. Pullman and S. Kirkland, On the dimension of the algebra generated by a Boolean matrix, Linear and Multilinear Algebra 38 (1994), 131-144.

[3] B. Liu, B.D. McKay, N.C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131.

[4] S.W. Neufeld, The concept of diameter in exponents of symmetric primitive graphs, Ars Combin. 51 (1999), 129-142.

[5] G. Ricci, Boolean matrices... neither Boolean nor matrices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 141-151.

[6] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), 348-358.

[7] J. Shao and Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math. 21 (1988), 147-156.

[8] B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003), 67-72.