Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2004_24_1_a3, author = {Zhou, Bo}, title = {Power indices of trace zero symmetric {Boolean} matrices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {53--61}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/} }
Zhou, Bo. Power indices of trace zero symmetric Boolean matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a3/
[1] M. Gavalec, Computing matrix period in max-min algebra, Discrete Appl. Math. 75 (1997), 63-70.
[2] D.A. Gregory, N.J. Pullman and S. Kirkland, On the dimension of the algebra generated by a Boolean matrix, Linear and Multilinear Algebra 38 (1994), 131-144.
[3] B. Liu, B.D. McKay, N.C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131.
[4] S.W. Neufeld, The concept of diameter in exponents of symmetric primitive graphs, Ars Combin. 51 (1999), 129-142.
[5] G. Ricci, Boolean matrices... neither Boolean nor matrices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 141-151.
[6] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), 348-358.
[7] J. Shao and Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math. 21 (1988), 147-156.
[8] B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003), 67-72.