Isomorphisms of direct products of lattice-ordered groups
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 43-52.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate sufficient conditions for the validity of certain implications concerning direct products of lattice-ordered groups.
Keywords: Lattice-ordered group, direct product, Specker lattice-ordered group, orthogonal σ-completeness
@article{DMGAA_2004_24_1_a2,
     author = {Jakub{\'\i}k, J\'an},
     title = {Isomorphisms of direct products of lattice-ordered groups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a2/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Isomorphisms of direct products of lattice-ordered groups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 43
EP  - 52
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a2/
LA  - en
ID  - DMGAA_2004_24_1_a2
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Isomorphisms of direct products of lattice-ordered groups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 43-52
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a2/
%G en
%F DMGAA_2004_24_1_a2
Jakubík, Ján. Isomorphisms of direct products of lattice-ordered groups. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a2/

[1] R.R. Appleson and L. Lovász, A characterization of cancellable k-ary structures, Period. Math. Hungar. 6 (1975), 17-19.

[2] P. Conrad, Lattice-Ordered Groups, Tulane University, New Orleans, LA, 1970.

[3] P. Conrad and M.R. Darnel, Lattice-ordered groups whose lattices determine their additions, Trans. Amer. Math. Soc. 330 (1992), 575-598.

[4] P.F. Conrad and M.R. Darnel, Generalized Boolean algebras in lattice-ordered groups, Order 14 (1998), 295-319.

[5] P.F. Conrad and M.R. Darnel, Subgroups and hulls of Specker lattice-ordered groups, Czechoslovak Math. J. 51 (126) (2001), 395-413.

[6] A. De Simone, D. Mundici and M. Navara, A Cantor-Bernstein theorem for s-complete MV-algebras, Czechoslovak Math. J. 53 (128) (2003), 437-447.

[7] W. Hanf, On some fundamental problems concerning isomorphisms of Boolean algebras, Math. Scand. 5 (1957), 205-217.

[8] J. Jakubí k, Cantor-Bernstein theorem for lattice-ordered groups, Czechoslovak Math. J. 22 (97) (1972), 159-175.

[9] J. Jakubí k, Direct product decompositions of infinitely distributive lattices, Math. Bohemica 125 (2000), 341-354.

[10] J. Jakubí k, A theorem of Cantor-Bernstein type for orthogonally s-complete pseudo MV-algebras, Tatra Mt. Math. Publ. 22 (2001), 91-103.

[11] J. Jakubí k, Cantor-Bernstein theorem for lattices, Math. Bohemica 127 (2002), 463-471.

[12] J. Jakubí k, Torsion classes of Specker lattice-ordered groups, Czechoslovak Math. J. 52 (127) (2002), 469-482.

[13] J. Jakubí k, On orthogonally s-complete lattice-ordered groups, Czechoslovak Math. J. 52 (127) (2002), 881-888.

[14] D. Jakubí ková-Studenovská, On a cancellation law for monounary algebras, Math. Bohemica 128 (2003), 77-90.

[15] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar. 18 (1967), 321-328.

[16] L. Lovász, On the cancellation among finite relational structures, Period. Math. Hungar. 1 (1971), 145-156.

[17] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971), 59-101.

[18] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Vol. 1, Wadsworth and Brooks/Cole, Montrey, CA, 1987.

[19] J. Novotný, On the characterization of a certain class of monounary algebras, Math. Slovaca 40 (1990), 123-126.

[20] M. Ploscica and M. Zelina, Cancellation among finite unary algebras, Discrete Math. 159 (1996), 191-198.

[21] R. Sikorski, A generalization of theorem of Banach and Cantor-Bernstein, Colloq. Math. 1 (1948), 140-144.

[22] R. Sikorski, Boolean Algebras, Second Edition, Springer-Verlag, Berlin 1964.

[23] A. Tarski, Cardinal Algebras, Oxford Univ. Press, New York 1949.