Bounded lattices with antitone involutions and properties of MV-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Library of Science

We introduce a bounded lattice L = (L;∧,∨,0,1), where for each p ∈ L there exists an antitone involution on the interval [p,1]. We show that there exists a binary operation · on L such that L is term equivalent to an algebra A(L) = (L;·,0) (the assigned algebra to L) and we characterize A(L) by simple axioms similar to that of Abbott's implication algebra. We define new operations ⊕ and ¬ on A(L) which satisfy some of the axioms of MV-algebra. Finally we show what properties must be satisfied by L or A(L) to obtain all axioms of MV-algebra.
Keywords: antitone involution, distributive lattice, implication algebra, MV-algebra
@article{DMGAA_2004_24_1_a1,
     author = {Chajda, Ivan and Emanovsk\'y, Peter},
     title = {Bounded lattices with antitone involutions and properties of {MV-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Emanovský, Peter
TI  - Bounded lattices with antitone involutions and properties of MV-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 31
EP  - 42
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/
LA  - en
ID  - DMGAA_2004_24_1_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Emanovský, Peter
%T Bounded lattices with antitone involutions and properties of MV-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 31-42
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/
%G en
%F DMGAA_2004_24_1_a1
Chajda, Ivan; Emanovský, Peter. Bounded lattices with antitone involutions and properties of MV-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/

[1] J.C. Abbott, Semi-boolean algebra, Mat. Vestnik 4 (1967), 177-198.

[2] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ. doi: Dordrecht/Boston/London 2000

[3] I. Chajda and R. Halas, Abbott's groupoids, Multiple Valued Logic, to appear.

[4] I. Chajda, R. Halas and J. Kühr, Distributive lattices with sectionally antitone involutions, preprint 2003.