Bounded lattices with antitone involutions and properties of MV-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 31-42
Voir la notice de l'article provenant de la source Library of Science
We introduce a bounded lattice L = (L;∧,∨,0,1), where for each p ∈ L there exists an antitone involution on the interval [p,1]. We show that there exists a binary operation · on L such that L is term equivalent to an algebra A(L) = (L;·,0) (the assigned algebra to L) and we characterize A(L) by simple axioms similar to that of Abbott's implication algebra. We define new operations ⊕ and ¬ on A(L) which satisfy some of the axioms of MV-algebra. Finally we show what properties must be satisfied by L or A(L) to obtain all axioms of MV-algebra.
Keywords:
antitone involution, distributive lattice, implication algebra, MV-algebra
@article{DMGAA_2004_24_1_a1,
author = {Chajda, Ivan and Emanovsk\'y, Peter},
title = {Bounded lattices with antitone involutions and properties of {MV-algebras}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {31--42},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/}
}
TY - JOUR AU - Chajda, Ivan AU - Emanovský, Peter TI - Bounded lattices with antitone involutions and properties of MV-algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2004 SP - 31 EP - 42 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/ LA - en ID - DMGAA_2004_24_1_a1 ER -
%0 Journal Article %A Chajda, Ivan %A Emanovský, Peter %T Bounded lattices with antitone involutions and properties of MV-algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2004 %P 31-42 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/ %G en %F DMGAA_2004_24_1_a1
Chajda, Ivan; Emanovský, Peter. Bounded lattices with antitone involutions and properties of MV-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a1/