Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 5-30.

Voir la notice de l'article provenant de la source Library of Science

Let ₃ denote the variety of alternative commutative (Jordan) algebras defined by the identity x³ = 0, and let ₂ be the subvariety of the variety ₃ of solvable algebras of solviability index 2. We present an infinite independent system of identities in the variety ₃ ∩ ₂₂. Therefore we infer that ₃ ∩ ₂₂ contains a continuum of infinite based subvarieties and that there exist algebras with an unsolvable words problem in ₃ ∩ ₂₂.
Keywords: nfinite independent system of identities, alternative commutative algebra, solvable algebra, commutative Moufang loop
@article{DMGAA_2004_24_1_a0,
     author = {Sandu, Nicolae},
     title = {Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a0/}
}
TY  - JOUR
AU  - Sandu, Nicolae
TI  - Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 5
EP  - 30
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a0/
LA  - en
ID  - DMGAA_2004_24_1_a0
ER  - 
%0 Journal Article
%A Sandu, Nicolae
%T Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 5-30
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a0/
%G en
%F DMGAA_2004_24_1_a0
Sandu, Nicolae. Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 1, pp. 5-30. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_1_a0/

[1] R.H. Bruck, A survey of binary systems, Springer-Verlag, Berlin 1958.

[2] O. Chein, H.O. Pflugfelder and J.D.H. Smith, (eds.), Quasigroups and Loops: Theory and Applications, Heldermann Verlag, Berlin 1990.

[3] V.T. Filippov, n-Lie algebras (Russian), Sibirsk. Mat. Zh. 26 (1985), no. 6, 126-140.

[4] S. Lang, Algebra, Addison-Wesley Publ. Co., Reading, MA, 1965.

[5] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, (second revised edition), Dover Publ., New York 1976.

[6] Yu.A. Medvedev, Finite basis property of varieties with binomial identities (Russian), Algebra i Logika 17 (1978), 705-726.

[7] Yu.A. Medvedev, Example of a variety of alternative at algebras over a field of characteristic two, that does not have a finite basis of identities (Russian), Algebra i Logika 19 (1980), 300-313.

[8] The Dniester Notebook: Unsolved problems in the theory of rings and modules (Russian), Third edition; Akad. Nauk SSSR Sibirsk Otdel., Inst. Mat., Novosibirsk 1982.

[9] A. Thedy, Right alternative rings, J. Algebra 37 (1975), 1-43.

[10] N.I. Sandu, Centrally nilpotent commutative Moufang loops (Russian), Mat. Issled. No. 51 (1979), (Quasigroups and loops), 145-155.

[11] N.I. Sandu, Infinite irreducible systems of identities of commutative Moufang loops and of distributive Steiner quasigroups (Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 51 (1987), 171-188.

[12] N.I. Sandu, On the Bruck-Slaby theorem for commutative Moufang loops (Russian), Mat. Zametki 66 (1999), 275-281; Eglish transl.: Math. Notes 66 (1999), 217-222.

[13] N.I. Sandu, About the embedding of Moufang loops into alternative algebras, to appear.

[14] U.U. Umirbaev, The Specht property of a variety of solvable alternative algebras (Russian), Algebra i Logika 24 (1985), 226-239.

[15] K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, and A.I. Shirshov, Rings that are nearly associative, Academic Press, New York 1982.