Locally finite M-solid varieties of semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 139-148.

Voir la notice de l'article provenant de la source Library of Science

An algebra of type τ is said to be locally finite if all its finitely generated subalgebras are finite. A class K of algebras of type τ is called locally finite if all its elements are locally finite. It is well-known (see [2]) that a variety of algebras of the same type τ is locally finite iff all its finitely generated free algebras are finite. A variety V is finitely based if it admits a finite basis of identities, i.e. if there is a finite set σ of identities such that V = ModΣ, the class of all algebras of type τ which satisfy all identities from Σ. Every variety which is generated by a finite algebra is locally finite. But there are finite algebras which are not finitely based. For semigroup varieties, Perkins proved that the variety generated by the five-element Brandt-semigroup
Keywords: locally finite variety, finitely based variety, M-solidvariety
@article{DMGAA_2003_23_2_a4,
     author = {Denecke, Klaus and Pibaljommee, Bundit},
     title = {Locally finite {M-solid} varieties of semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a4/}
}
TY  - JOUR
AU  - Denecke, Klaus
AU  - Pibaljommee, Bundit
TI  - Locally finite M-solid varieties of semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 139
EP  - 148
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a4/
LA  - en
ID  - DMGAA_2003_23_2_a4
ER  - 
%0 Journal Article
%A Denecke, Klaus
%A Pibaljommee, Bundit
%T Locally finite M-solid varieties of semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 139-148
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a4/
%G en
%F DMGAA_2003_23_2_a4
Denecke, Klaus; Pibaljommee, Bundit. Locally finite M-solid varieties of semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a4/

[1] Sr. Arworn, Groupoids of Hypersubstitutions and G-Solid Varieties, Shaker-Verlag, Aachen 2000.

[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, Berlin-Heidelberg-New York 1981.

[3] Th. Changphas and K. Denecke, Complexity of hypersubstitutions and lattices of varieties, Discuss. Math. - Gen. Algebra Appl. 23 (2003), 31-43.

[4] K. Denecke and J. Koppitz, M-solid varieties of semigroups, Discuss. Math. - Algebra Stochastics Methods 15 (1995), 23-41.

[5] K. Denecke, J. Koppitz and N. Pabhapote, The greatest regular-solid variety of semigroups, preprint 2002.

[6] O.G. Kharlampovich and M.V. Sapir, Algorithmic problems in varieties, Internat. J. Algebra Comput. 5 (1995), 379-602.

[7] A.Yu. Olshanski, Geometry of Defining Relations in Groups, (Russian), Izdat. 'Nauka', Moscow 1989.

[8] G. Paseman, A small basis for hyperassociativity, preprint, University of California, Berkeley, CA, 1993.

[9] P. Perkins, Decision Problems for Equational Theories of Semigroups and General Algebras, Ph.D. Thesis, University of California, Berkeley, CA, 1966.

[10] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298-314.

[11] J. P onka, Proper and inner hypersubstitutions of varieties, Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Palacký University of Olomouc 1994, 106-116.

[12] L. Polák, On hyperassociativity, Algebra Universalis, 36 (1996), 363-378.

[13] M. Sapir, Problems of Burnside type and the finite basis property in varieties of semigroups, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 319-340, English transl. in Math. USSR-Izv. 30 (1988), 295-314.