Rank and perimeter preserver of rank-1 matrices over max algebra
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 125-137
Voir la notice de l'article provenant de la source Library of Science
For a rank-1 matrix A = a ⊗ b^t over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V, or T(A) = U ⊗ A^t ⊗ V with some monomial matrices U and V.
Keywords:
max algebra, semiring, linear operator, monomial, rank, dominate, perimeter, (U,V)-operator
@article{DMGAA_2003_23_2_a3,
author = {Song, Seok-Zun and Kang, Kyung-Tae},
title = {Rank and perimeter preserver of rank-1 matrices over max algebra},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {125--137},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a3/}
}
TY - JOUR AU - Song, Seok-Zun AU - Kang, Kyung-Tae TI - Rank and perimeter preserver of rank-1 matrices over max algebra JO - Discussiones Mathematicae. General Algebra and Applications PY - 2003 SP - 125 EP - 137 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a3/ LA - en ID - DMGAA_2003_23_2_a3 ER -
%0 Journal Article %A Song, Seok-Zun %A Kang, Kyung-Tae %T Rank and perimeter preserver of rank-1 matrices over max algebra %J Discussiones Mathematicae. General Algebra and Applications %D 2003 %P 125-137 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a3/ %G en %F DMGAA_2003_23_2_a3
Song, Seok-Zun; Kang, Kyung-Tae. Rank and perimeter preserver of rank-1 matrices over max algebra. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 125-137. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a3/