Duality for some free modes
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 45-61.

Voir la notice de l'article provenant de la source Library of Science

The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.
Keywords: duality, modes, affine spaces and their subreducts, barycentric algebras, convex sets, simplices, hypercubes
@article{DMGAA_2003_23_1_a4,
     author = {Pszczo{\l}a, Krzysztof and Romanowska, Anna and Smith, Jonathan},
     title = {Duality for some free modes},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {45--61},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a4/}
}
TY  - JOUR
AU  - Pszczoła, Krzysztof
AU  - Romanowska, Anna
AU  - Smith, Jonathan
TI  - Duality for some free modes
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 45
EP  - 61
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a4/
LA  - en
ID  - DMGAA_2003_23_1_a4
ER  - 
%0 Journal Article
%A Pszczoła, Krzysztof
%A Romanowska, Anna
%A Smith, Jonathan
%T Duality for some free modes
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 45-61
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a4/
%G en
%F DMGAA_2003_23_1_a4
Pszczoła, Krzysztof; Romanowska, Anna; Smith, Jonathan. Duality for some free modes. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 45-61. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a4/

[1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.

[2] D.M. Clark and B.A. Davey, Natural Dualities for the Working Algebraists, Cambridge University Press, Cambridge 1998.

[3] B. Csákány, Varieties of affine modules, Acta Sci Math. 37 (1975), 3-10.

[4] B.A. Davey, Duality theory on ten dollars a day, 'Algebras and Orders', Kluwer Acad. Publ. 1993, 71-111.

[5] B.A. Davey and R.W. Quackenbush, Bookkeeping duality for paraprimal algebras, Contributions to General Algebra 9 (1995), 19-26.

[6] B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Colloq. Math. Soc. J. Bolyai 33 (1980), 101-275.

[7] G. Grätzer, Universal Algebra, Springer-Verlag, Berlin 1979.

[8] K.H. Hofmann, M. Mislove and A. Stralka, The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications, Springer-Verlag,Berlin 1974.

[9] J. Jezek and T. Kepka, Free commutative idempotent abelian groupoids and quasigroups, Acta Univ. Carolin. Math. Phys. 17 (1976), 13-19.

[10] J. Jezek and T. Kepka, Medial Groupoids, Academia, Praha 1983.

[11] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, Berlin 1971.

[12] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York 1973.

[13] W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21 (1970), 11-16.

[14] K. Pszczoła, Duality for affine spaces over finite fields, Contributions to General Algebra 13 (2001), 285-293.

[15] K.J. Pszczoła, A.B. Romanowska and J.D.H. Smith, Duality for quadrilaterals, Contribution to General Algebra, to appear.

[16] A.B. Romanowska, Barycentric algebras, 'General Algebra and Applications', Shaker Verlag, Aachen 2000, 167-181.

[17] A.B. Romanowska and J.D.H. Smith, Modal Theory, Heldermann-Verlag, Berlin 1985.

[18] A.B. Romanowska and J.D.H. Smith, Semilattice-based dualities, Studia Logica 56 (1996), 225-261.

[19] A.B. Romanowska and J.D.H. Smith, Duality for semilattice representations, J. Pure Appl. Algebra 115 (1997), 289-308.

[20] A.B. Romanowska and J.D.H. Smith, Embedding sums of cancellatice modes into functorial sums of affine spaces, 'Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday', IOS Press, Amsterdam 2001, 127-139.

[21] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.

[22] A.B. Romanowska and J.D.H. Smith, Poset extensions, convex sets, and semilattice presentations, preprint, 2002.

[23] J.D.H. Smith and A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.