A scheme for congruence semidistributivity
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 13-18.

Voir la notice de l'article provenant de la source Library of Science

A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the ∧-semidistributive law.
Keywords: ∧ -semidistributivity, generalized semidistribitive law, triangular scheme
@article{DMGAA_2003_23_1_a1,
     author = {Chajda, Ivan and Horv\'ath, Eszter},
     title = {A scheme for congruence semidistributivity},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Horváth, Eszter
TI  - A scheme for congruence semidistributivity
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 13
EP  - 18
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a1/
LA  - en
ID  - DMGAA_2003_23_1_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Horváth, Eszter
%T A scheme for congruence semidistributivity
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 13-18
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a1/
%G en
%F DMGAA_2003_23_1_a1
Chajda, Ivan; Horváth, Eszter. A scheme for congruence semidistributivity. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a1/

[1] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.

[2] I. Chajda and E.K. Horváth, A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29-35.

[3] G. Czédli, Weak congruence semidistributivity laws and their conjugates, Acta Math. Univ. Comenian. 68 (1999), 153-170.

[4] W. Geyer, Generalizing semidistributivity, Order 10 (1993), 77-92.

[5] H.P. Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79 pp.

[6] K.A. Kearnes and Á. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), 497-53.

[7] P. Lipparini, Characterization of varieties with a difference term, II: neutral = meet semidistributive, Canadian Math. Bull. 41 (1988), 318-327.