Frobenius n-group algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 153-159.

Voir la notice de l'article provenant de la source Library of Science

Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
Keywords: n-ary group (n-group, polyadic group), (2,n)-ring, n-group-ring (algebra), (quasi-) Frobenius property, Artinianity property, regular bilinear from, descending chain condition for left (right) ideals, univeral enveloping (or covering) group, annhilator
@article{DMGAA_2002_22_2_a4,
     author = {Zekovi\'c, Biljana},
     title = {Frobenius n-group algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a4/}
}
TY  - JOUR
AU  - Zeković, Biljana
TI  - Frobenius n-group algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 153
EP  - 159
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a4/
LA  - en
ID  - DMGAA_2002_22_2_a4
ER  - 
%0 Journal Article
%A Zeković, Biljana
%T Frobenius n-group algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 153-159
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a4/
%G en
%F DMGAA_2002_22_2_a4
Zeković, Biljana. Frobenius n-group algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 153-159. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a4/

[1] V.A. Artamonov, Free n-groups (Russian), Mat. Zametki 8 (1970), 499-507.

[2] L.A. Bokut, I.V. L'vov and V.K. Kharchenko, Nonkommutative Rings (Russian), vol. 18 of 'Itogi Nauki i Tekhniki', Izdat. VINITI, Moscov 1988.

[3] A.G. Kurosh, General Algebra. - Lectures of the 1969-1970 Academic Year (Russian), Izdat, 'Nauka', Moscov 1974.

[4] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350.

[5] B. Zeković and V.A. Artamonov, n-Group rings and their radicals (Russian), Abelian Groups and Modules (Tomsk), 11 (1992), 3-7 (in Russian).

[6] B. Zeković and V.A. Artamonov, Connections betweem some properties of n-group rings and group rings (Russian), Math. Montisnigri 11 (1999), 151-158.